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a b s t r a c t

Translation models have been defined as memoryless mappings of Gaussian elements which match ex-
actly/approximately target marginal distributions/correlations. We extend this class of translation models to
include memoryless mappings of non-Gaussian elements. It is shown that quantities of interest inferred from
equivalent translation models, i.e., models which share the same marginal distributions and have similar second
moments, can differ significantly. It is suggested to construct families of equivalent translation models and select
members of these families which are optimal for given quantities of interest.
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1. Introduction

Gaussian vectors and random functions have and continue to be used
extensively in applications because they are conceptually simple and can
be calibrated to relatively small data sets as their laws are completely
defined by the first two moments. Moreover, Gaussian models are
consistent with physics in some applications, e.g., the seismic ground
acceleration process [1], and provide convenient tools to, e.g., construct
posterior distributions for unknown parameters [2] and describe two-
phase microstructures [3] (Sect. 8.2).

The popularity of the Gaussian models also relates to constraints of
most available non-Gaussian models which limit their use in applica-
tions [4]. Translation models introduced in [5] constitute a notable
exception. Like Gaussian models, they are conceptually simple and
computationally efficient. Moreover, they can capture a broad range of
features of non-Gaussian vectors and random functions and have been
proved useful in a broad range of applications [6–10]. Yet, translation
models have limitations which are largely caused by the crude manner
in which they capture the dependence between target random elements,
i.e., they characterize dependence by correlation. This approach can
result in unsatisfactory approximations for some quantities of interest.

Our objectives are to (1) extend the class of translation models in [5]
to include memoryless transformations of non-Gaussian elements and
(2) compare the performance of translation models defined as images
of Gaussian and non-Gaussian elements, referred to as Gauss-translation
and NGauss-translation random vectors and functions.

It is shown that families of equivalent translation models, i.e., models
which share the same marginal distributions and have similar second
moments, can be constructed for target random elements and that
quantities of interest inferred from equivalent translation models can
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differ significantly. This suggests to describe target random elements
by families of translation models and select optimal members of these
families for given quantities of interest. Theoretical arguments on Gauss-
and NGauss-translation models are illustrated by numerical examples
which include random vectors and stochastic processes. Several quanti-
ties of interest are used to assess the performance of Gauss- and NGauss-
translation models, e.g., extremes and temporal averages for stochastic
processes.

2. Translation vectors

Translation models for non-Gaussian vectors have been defined as
memoryless mappings of Gaussian vectors and have two properties.
They match exactly and, generally, approximately target marginal
distributions and correlations, respectively. Let 𝑋 be a non-Gaussian
R𝑑 -valued random variable with marginal distributions {𝐹0,𝑖}, finite sec-
ond moments, and scaled covariance matrix 𝜉𝑖𝑗 = 𝐸

[(

𝑋𝑖 −𝐸[𝑋𝑖]
) (

𝑋𝑗 −
𝐸[𝑋𝑗 ]

)]

∕
√

Std[𝑋𝑖] Std[𝑋𝑗 ], 𝑖, 𝑗 = 1,… , 𝑑. The components of the Gauss-
translation model �̃� of 𝑋 are defined by

�̃�𝑖 = 𝐹−1
0,𝑖 ◦

(

𝛷(𝐺𝑖)
)

=∶ ℎ𝑖(𝐺𝑖), 𝑖 = 1,… , 𝑑, (1)

where 𝛷 denotes the distribution of the standard Gaussian variable
𝑁(0, 1) and {𝐺𝑖} are 𝑁(0, 1) variable with correlations {𝜌𝑖𝑗 = 𝐸[𝐺𝑖 𝐺𝑗 ]}.
Properties of this class of translation models including their existence
are discussed in, e.g., [11] (Chap. 3) and [12]. We only note that the
covariances of �̃� and of the Gaussian vector 𝐺 = (𝐺1,… , 𝐺𝑑 ) are such
that |𝜉𝑖𝑗 | ≤ |𝜌𝑖𝑗 |, 𝜉𝑖𝑗 = 1 for 𝜌𝑖𝑗 = 1, and 𝜉𝑖𝑗 ≥ −1 for 𝜌𝑖𝑗 = −1.
The latter property shows that translation models may not be able to
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Fig. 1. Difference |

|

|

𝑃
(

∩𝑑
𝑖=1{𝐺𝑖 ≤ 𝑢}

)

−𝛷(𝑢)𝑑 ||
|

for 𝜌 = 0.5, 0.7, 0.9, and 0.99.

capture strong negative correlations between components of target non-
Gaussian vectors.

Conceptual simplicity and computational efficiency are the main
features of Gauss-translation models. Their implementation only re-
quires to calculate optimal correlations for the Gaussian image 𝐺 of the
target vector 𝑋. Generally, these correlation are not far from the target
correlations [11] (Sect. 3.1). This observation can be used to initiate
optimization algorithms for finding optimal correlations in the Gaussian
space. Once the correlations in the Gaussian space have been obtained,
the Gauss-translation model �̃� is completely defined. Its samples can
be obtained from samples of the Gaussian vector 𝐺 via the mappings in
Eq. (1). We also note that Gauss-translation models are uniquely defined
for given metric of the discrepancy between the correlations of 𝑋 and
�̃�.

Following are properties of Gauss- and NGauss-translation vectors
which are relevant for applications and numerical examples which
illustrate similarities and differences between translation models.

Property 1. Simultaneously large values of components of Gaussian vectors
are independent.

Proof. It can be shown that [13] (Corollary 4.2.4)

|

|

|

𝑃
(

𝐺1 ≤ 𝑢,… , 𝐺𝑑 ≤ 𝑢
)

−𝛷(𝑢)𝑑 ||
|

≤ 𝑐
∑

1≤𝑖<𝑗≤𝑑
|𝜌𝑖𝑗 | exp

(

− 𝑢2

1 + |𝜌𝑖𝑗 |

)

, (2)

where {𝐺𝑖} are standard Gaussian variables with correlations {𝜌𝑖𝑗 =
𝐸[𝐺𝑖 𝐺𝑗 ]} and 𝑐 > 0 is a constant which depends on max{|𝜌𝑖𝑗 |} assumed
to be strictly smaller than unity. This inequality implies |

|

|

𝑃
(

𝐺1 ≤ 𝑢,… ,

𝐺𝑑 ≤ 𝑢
)

−𝛷(𝑢)𝑑 ||
|

→ 0, 𝑢 → ∞, i.e., the approximation 𝑃
(

𝐺1 ≤ 𝑢,… , 𝐺𝑑 ≤
𝑢
)

≃ 𝛷(𝑢)𝑑 holds for large thresholds 𝑢, so that large samples of Gaussian
variables are independent regardless their correlation, provided it is not
perfect. ▴

For example, suppose 𝐺 = (𝐺1,… , 𝐺𝑑 ) is a standard Gaussian vector
with equally correlated components, i.e., 𝐺𝑖 =

√

𝜌𝑁 +
√

1 − 𝜌𝑁𝑖,
𝑖 = 1,… , 𝑑, 𝜌 > 0, where 𝑁,𝑁𝑖 are independent 𝑁(0, 1) so that

𝑃
(

∩𝑑
𝑖=1{𝐺𝑖 ≤ 𝑢}

)

= 𝐸
[

𝑃
(

∩𝑑
𝑖=1{𝑁𝑖 ≤ (𝑢 −

√

𝜌𝑁)∕
√

1 − 𝜌}
)]

= 𝐸
[

𝛷
(

(𝑢 −
√

𝜌𝑁)∕
√

1 − 𝜌
)𝑑]

which is 𝛷(𝑢)𝑑 for 𝜌 = 0. Fig. 1 plots the difference |

|

|

𝑃
(

𝐺1 ≤ 𝑢,… , 𝐺𝑑 ≤
𝑢
)

− 𝛷(𝑢)𝑑 ||
|

of probabilities against the threshold 𝑢 for 𝑑 = 10 and
several values of 𝜌. The difference decreases with 𝑢 for all values of
𝜌 in agreement with Property 1.

Property 2. Simultaneously large values of components of Gauss-
translation vectors are independent.

Proof. The random variables {𝐺𝑖}, 𝑖 = 1,… , 𝑑, in Eq. (1) are standard
Gaussian but, generally, the vector 𝐺 = (𝐺1,… , 𝐺𝑑 ) is not Gaussian. To
define �̃�, we need to select a covariance matrix 𝜌 = {𝜌𝑖𝑗} for 𝐺 which
is optimal in the sense that the covariance matrix of �̃� is as close as
possible to the target covariance matrix in some metric. Since the events
{𝐺𝑖 ≤ 𝑢}, 𝑖 = 1,… , 𝑑, are asymptotically (𝑢 → ∞) independent, so are
their images provided the mappings {𝐺𝑖 ↦ ℎ𝑖(𝐺𝑖)} are monotonically
increasing, i.e.,

𝑃
(

∩𝑑
𝑖=1{�̃�𝑖 ≤ 𝑥𝑖}

)

= 𝑃
(

∩𝑑
𝑖=1{𝐺𝑖 ≤ 𝑢𝑖}

)

,

where 𝑢𝑖 = 𝛷−1◦𝐹𝑖(𝑥𝑖), 𝑖 = 1,… , 𝑑. The asymptotic independence of
the right tails of the components {�̃�𝑖} of translation vectors follows
from the normal comparison lemma [13] (Theorem 4.2.1) which shows
|

|

|

𝑃
(

∩𝑑
𝑖=1{𝐺𝑖 ≤ 𝑢𝑖}

)

−
∏𝑑

𝑖=1𝛷(𝑢𝑖)
|

|

|

→ 0, 𝑢𝑖 → ∞. ▴

Property 3. Joint distributions of Gauss-translation and target vectors �̃�
can be inconsistent in the sense that, if 𝐹0,1 = 𝐹0,2, we have 𝑃

(

�̃�1 ≤ 𝑥1, �̃�2 ≤
𝑥2
)

= 𝑃
(

�̃�1 ≤ 𝑥2, �̃�2 ≤ 𝑥1
)

while the target vector 𝑋 may not have this
property.

Proof. Consider the special case of a target random vector 𝑋 with
dimension 𝑑 = 2 so that the components of its Gauss-translation model
in Eq. (1) are �̃�𝑖 = 𝐹−1

0,1 ◦𝛷(𝐺𝑖) = ℎ(𝐺𝑖), 𝑖 = 1, 2, where 𝐺𝑖 ∼ 𝑁(0, 1) with
correlation 𝜌 = 𝐸[𝐺1 𝐺2]. The joint distribution of �̃� has the expression

𝑃
(

�̃�1 ≤ 𝑥1, �̃�2 ≤ 𝑥2
)

= 𝑃
(

𝐺1 ≤ ℎ−1(𝑥1), 𝐺2 ≤ ℎ−1(𝑥2)
)

= 𝛷
(

ℎ−1(𝑥1), ℎ−1(𝑥2); 𝜌
)

,

where 𝛷(⋅, ⋅; 𝜌) denotes the joint distribution of 𝐺 = (𝐺1, 𝐺2). Since
𝛷(𝑢, 𝑣; 𝜌) = 𝛷(𝑣, 𝑢; 𝜌), 𝑢, 𝑣 ∈ R, we have 𝑃

(

�̃�1 ≤ 𝑥1, �̃�2 ≤ 𝑥2
)

=
𝑃
(

�̃�1 ≤ 𝑥2, �̃�2 ≤ 𝑥1
)

. However, target random vectors may or may not
have this property, e.g., the Type C bivariate extreme-value distribution
𝐹 (𝑥1, 𝑥2) = exp

[

−max{exp(−𝑥) + (1 − 𝜙) exp(−𝑦), exp(−𝑦)}
]

has marginal
distributions 𝐹𝑖(𝑥) = exp

(

−exp(−𝑥)
)

, 𝑖 = 1, 2, but is not symmetric [4]
(Sect. 2.3). ▴

We also note that Gaussian vectors are distribution-isotropic in
the sense that projections of Gaussian vectors on arbitrary directions
are Gaussian as linear forms of their components while non-Gaussian
vectors do not have this property. For example, suppose 𝑋 is two-
dimensional with components 𝑋𝑖 = 𝑁2

𝑖 , 𝑖 = 1, 2, where 𝑁𝑖 ∼ 𝑁(0, 1)
with correlation 𝜌𝑁 = 0.25. The solid and dash lines in the left panel
of Fig. 2 show that the skewness and kurtosis coefficients of 𝑋(𝜃) =
𝑋1 cos(𝜃) + 𝑋2 sin(𝜃) depends strongly on 𝜃 ∈ [0, 𝜋∕2]. In contrast, the
skewness and kurtosis of the Gaussian image of the translation model
of 𝑋 are invariant with 𝜃 and equal to 0 and 3. The middle and right
panels in the figure show histograms of 𝑋(𝜃) for 𝜃 = 0 and 𝜋∕4. They are
consistent with the estimates of skewness and kurtosis in the left panel.

Consider now an extension of Gauss-translation models defined as
memoryless mappings of non-Gaussian vectors. Let 𝑌 be an R𝑑 -valued
random vector with joint distribution 𝐹 and marginal distributions {𝐹𝑖},
𝑖 = 1,… , 𝑑, and set

�̃�𝑖 = 𝐹−1
0,𝑖 ◦

(

𝐹𝑖(𝑌𝑖)
)

=∶ ℎ𝑖(𝑌𝑖), 𝑖 = 1,… , 𝑑, (3)

where {𝑌𝑖} are the components of 𝑌 . We refer to the random vector
�̃� = (�̃�1,… , �̃�𝑑 ) as NGauss-translation model since its image is a
non-Gaussian vector. As for the Gauss-translation models, the marginal
distributions of �̃� in Eq. (3) match exactly target marginal distributions.
The dependence between the components of �̃� is defined by that
between the components of 𝑌 and the mappings {𝑌𝑖 ↦ �̃�𝑖}.

The construction of NGauss-translation models requires knowledge
of the joint distribution of 𝑌 . Although the class of non-Gaussian vectors
with known marginal distributions is rather limited [4], it can be used
to enrich the class of Gauss-translation models. Let  denote a family
of random vectors 𝑌 with known joint distributions, which includes
Gaussian vectors. Suppose the members of  have been mapped into
translation models for a target random vector 𝑋. We select the model
which best describes a particular quantity of interest derived from 𝑋.
The optimal models may or may not be Gauss-translation vectors.
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