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A B S T R A C T

The Spectral Representation Method is generalized for simulation of asymmetrically nonlinear (skewed higher-
order) stochastic processes. This is achieved by deriving new orthogonal increments for the spectral process in
the Cramér spectral representation that include wave interactions and satisfy third-order orthogonality
properties. These orthogonal increments are derived by introducing two new quantities – the pure power
spectrum and the partial bicoherence – that decouple the contributions of single waves and wave interactions in
the Fourier-type expansion of a stochastic process. The further extension to fourth and higher-order processes is
discussed. Several mathematical examples demonstrate the capabilities of the proposed methodology to
generate general third-order stochastic processes. The method is then applied to the generation of turbulent
wind velocities characterized from Large Eddy Simulations of the atmospheric boundary layer.

1. Introduction

Stochastic process theory has wide-ranging applications in engineering
mechanics from characterizing and synthesizing heterogeneous materials
to the dynamics of ocean waves, wind loads, and earthquake accelerations.
Computational analysis of these stochastic systems requires the generation
of realistic sample functions of stochastic processes. These simulations are
typically applied in the context of a Monte Carlo type analysis wherein a
large number of sample functions are simulated, the system of governing
equations are solved for each simulation, and the results are evaluated
statistically. Analogously, these simulations may occur in the context of a
stochastic collocation, quasi-Monte Carlo, variance reduced Monte Carlo,
or some other simulation-based probabilistic method where the intention
is to quantify the response probabilistically (e.g. to assess variability or
reliability).

The crux of these simulation-based approaches is the ability to
accurately generate realizations of the stochastic processes that possess
the desired probability law to an acceptable degree. This problem has given
rise to many different simulation methodologies over the past 40 years. We
will focus in this work on those methodologies constructed from stochastic
expansions of general form:

∑A x ω A x ω C ω θ x x D ω Ω( , ) ≈ ( , ) = ( ) ( ), ∈ , ∈
i

n
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where C ω{ ( )}i are a set of independent random variables on the probability
space Ω F P( , , ) and θ x{ ( )}i are deterministic basis functions. Most notable
for our purposes is that, to date, every such stochastic expansion has been
derived from second-order properties of the process (specifically from the
covariance function). The most commonly used of these second-order
expansions are the Karhunen–Loève (K–L) expansion [1,2], the spectral

representation method (SRM) [3–5], and optimal linear expansion (OLE)
[6]. Each of these methods expands the process according to Eq. (1) by
identifying the random variables C ω{ ( )}i and the basis functions θ x{ ( )}i
such that

C x x E A x A x E A x A x( , ) = [ ( ) ( )] ≈ [ ( ) ( )]1 2 1 2 1 2 (2)

In the case of the K–L expansion, θ x{ ( )}i are the eigenfunctions of C x x( , )1 2
and C ω{ ( )}i are zero-mean and unit standard deviation random variables.
Similarly, for the SRM, θ x{ ( )}i are harmonic functions and the C ω{ ( )}i can
be derived from the power spectral density function (Fourier transform of
C x x( , )1 2 ).

The primary drawback of these methodologies is their inherently
second-order nature - they can only represent the process accurately up
to its covariance. This second-order limitation equates to the assumption
that the stochastic process arises as the output of a linear system operating
on some random input. This is clearly not true for many real stochastic
processes generated from strongly nonlinear systems such as turbulent flow
governed by the Navier–Stokes equations, seismic wave propagation in
nonlinear soils, or through systems approximated using say, N-th order
Volterra series [7,8]. These nonlinear systems result in complex nonlinear
dependencies and wave interactions that are elaborated in the subsequent
sections. For this reason, such processes have been commonly referred to,
and are referred to herein as nonlinear processes.

Expansions with the general form in Eq. (1) are shown to be
asymptotically Gaussian when C ω{ ( )}i are independent by the Central
limit theorem [9]. Efforts toward improving these models have focused
almost exclusively on nonlinear transformations of Eq. (1) – often
referred to as translation processes [10]. These nonlinear transforma-
tions come in a variety of forms that map the process to match specific
properties of the process such as moments of a specified order using e.g.
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Hermite polynomials [11,12] – while matching the covariance function
as closely as possible. One class of nonlinear transformations of
particular interest are those capable of matching the marginal non-
Gaussian PDF of the process and the covariance function through either
the explicit CDF-based mapping [10,13]

Y x F Φ A x( ) = { [ ( )]}−1 (3)

where A(x) is a Gaussian random process, Φ (·) is the standard normal CDF
and F (·)−1 is the inverse non-Gaussian marginal CDF, or through an
approximate polynomial chaos expansion [14]. Recent developments have
enabled the efficient and widespread use of these CDF-based translation
models for simulation of scalar [15] and vector [16], stationary processes
and nonstationary processes [17,18] using either the SRM or K–L expan-
sion.

Another class of methods, first proposed by Phoon et al. [19,20] aims
to expand a second-order non-Gaussian process directly using the K–L
expansion by iteratively identifying the non-Gaussian distribution of the
K–L random variables. Unlike the nonlinear translation-based ap-
proaches, however, these methods are not able to match the marginal
non-Gaussian PDF of the process exactly.

The aforementioned methodologies represent notable achievements in
producing high-accuracy stochastic process simulations. Their common
shortcoming is that they all remain second-order, derived only from the
covariance of the process and marginal densities. In this work, we derive a
novel direct higher-order stochastic expansion that generalizes the popular
Spectral Representation Method. Specifically, we derive orthogonal incre-
ments for the classical Cramér spectral representation that satisfy higher-
order orthogonality conditions elucidated by Rosenblatt and Van Ness [21].
Applying these orthogonal increments to a stochastic expansion model in
the form of the spectral representation provides a means of generating
sample functions of stochastic processes with prescribed 3-point correla-
tions (equivalently bispectra). Some discussion of generalization to pro-
cesses with prescribed n-point correlations is provided. We explore the
implications of the proposed method through several mathematical exam-
ples and apply it to the generation of a wind velocity process characterized
from computational fluid dynamics (CFD).

Prior to deriving the new methodology, we provide a review of
higher-order properties of stochastic processes and their importance in
mechanics in the following section.

2. Higher-order properties of stochastic processes

The higher-order properties are basic descriptors of stochastic processes
resulting from nonlinear systems (here, nonlinear mechanics) [22].
Integrating these higher-order properties can be critical to the accurate
characterization and modeling of numerous physical systems. Effective
material properties for random heterogeneous materials (e.g. electrical or
thermal conductivity, permeability in porous media), for example, are often
governed by complex n-point correlations, lineal-path functions, etc. that are
not captured by simply matching the covariance of the process [23]. This has
motivated methodologies for random material morphology generation using
inverse optimization approaches wherein a specific sample function is
stochastically optimized to match these higher-order properties [24]. These
methods, however, involve solving a computationally expensive stochastic
optimization problem for each generated sample function with no guarantee
that the properties of the process will match with sufficient accuracy.

Additional applications in mechanics where higher-order properties have
been shown to be important include nonlinear dynamics [25,26] and various
areas of fluid mechanics such as wave interactions [27,28] and turbulence
[29,30]. Moreover, the importance of higher-order properties in stochastic
processes goes far beyond the applications in mechanics to signal processing
where they are widely used [31,32,26], analysis of astronomical data [33],
and plasma physics [34]. However, in all of the previous examples (materials
modeling excepted), the focus has been entirely on characterization and
interpretation of higher-order properties and there have been no efforts to
integrate these important properties in the modeling of physical systems.
This, we believe is driven by two factors. 1. Characterization of higher-order
properties presents numerous technical challenges that can only be overcome
by access to very large data sets. 2. No mathematical construction currently

exists through which to integrate these properties. We aim to address the
second challenge specifically and believe that the first challenge is presently
being addressed through massive data collection efforts that are growing
increasingly common in numerous fields (e.g. materials characterization and
wind engineering).

Having motivated their importance, we now briefly review the
specific mathematical properties of interest here.

2.1. Cumulant and moment functions

Given a real random vector X x x x= { , , …, }n1 2 , the joint moments of
order r k k k= + + ⋯ + n1 2 are defined by [35,31]:
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and the joint cumulants of order r are defined by:
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where

Φ ω ω ω E e( , ,…, ) ≡ [ ]n
i ω x ω x ω x

1 2
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is the joint characteristic function. In general, the cumulants can be
expressed in terms of the moments through the following relationships
[31]:
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where the summation extends over all groups s s s p n{ , ,…, }, = 1, 2,…,p1 2
of the integers k k k, ,…, n1 2 . For example, some third order cumulants are
given by
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Note that when X is a jointly Gaussian random vector, all cumulants of
order n > 2 are identically zero. In this sense, the cumulants of order
higher than n = 2 provide measures of non-Gaussianity.

Next, let f(t) denote a real stationary stochastic process such that the
moment and cumulant functions can be denoted by:
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Combining Eqs. (7) and (9), the cumulant functions can be expressed in
terms of the moment functions as:
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Notice that when f(t) is a zero mean process m( = 0)f
1 , the moments

and cumulants up to order 3 are identical.
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