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A B S T R A C T

Existing approaches for generating non-Gaussian random fields typically utilize translation process theory that
applies a memoryless nonlinear transformation to an underlying Gaussian random field. In the current study, a
direct non-translation approach is proposed to generate random fields with a marginal gamma distribution. The
proposed approach is based on the additive reproductive property of the gamma distribution; it results in a
conceptually simple algorithm that is straightforward to implement in Monte-Carlo simulations. It is
demonstrated that an arbitrary marginal gamma distribution is achievable. The resulting auto-correlation
functions are non-negative and decreasing functions with a prescribed scale of fluctuation. These characteristics
make the proposed non-translation approach suitable for modelling the spatial variability in material
properties. The engineering implications of the proposed approach are illustrated through an application
example wherein the proposed approach is utilized to generate a spatially varying undrained shear strength field
for a two-dimensional plane strain slope, and the stability of the slope is analyzed by the finite element method
with Monte-Carlo simulations. Since many material properties have a non-zero lower bound, the three-
parameter gamma distribution is also discussed, and an asymptotically unbiased and consistent estimate of the
lower bound is proposed.

1. Introduction

Spatial variability in material properties is typically simulated using
a random field that is described by its marginal distribution and auto-
correlation function (ACF). The marginal distribution of the random
field is usually non-Gaussian, since most of the material properties
have exclusively positive values. To achieve strictly positive values,
various non-Gaussian distributions are commonly used, such as the
lognormal distribution, the beta distribution and the gamma distribu-
tion (see [1–3]). Specifically, the lognormal and gamma distributions
are often shifted to reflect a non-zero lower bound in material proper-
ties [4] that may be difficult to estimate. Furthermore, since the
correlation of a material property at two separate points is expected
to decrease as the distance of separation between the points increases,
the ACF of a material property is likely to be a monotonically
decreasing non-negative function of spatial distance, as seen in the
triangular and exponential models.

The available approaches for generating these kinds of non-
Gaussian random fields primarily utilize translation process theory,
which applies a memoryless nonlinear transformation to an underlying

Gaussian random field [5]. The so-called standard translation maps the
Gaussian field G ωs( ; ) to the non-Gaussian field X ωs( ; ) through the
marginal cumulative distribution function (CDF) as:

X ω F Φ G ωs s( ; ) = { [ ( ; )]}−1 (1)

where Φ and F are, respectively, the marginal CDFs of a standard
Gaussian variable and the target non-Gaussian variable; s is the
coordinate vector; and ω is the random component. Note that the
translation random field will be stationary if the underlying Gaussian
field is stationary. An alternative class of translation methods expands
the non-Gaussian field in terms of a set of orthogonal polynomials
operating on an underlying Gaussian random field – referred to as
polynomial chaos expansions (PCE). The standard translation techni-
que in Eq. (1) is readily applicable in cases with any type of marginal
distribution and ACF as long as they are compatible, whereas PCE
approaches cannot match the marginal distribution exactly [6].
However, the ACF is often distorted by the standard translation, and
various approaches have been developed to address the distortion in
the ACF (e.g. [7,8]); most of these involve numerical and/or iterative
methods. Common techniques for generating the underlying Gaussian

http://dx.doi.org/10.1016/j.probengmech.2017.01.001
Received 18 June 2016; Received in revised form 13 November 2016; Accepted 17 January 2017

⁎ Corresponding author.
E-mail addresses: ceeliuy@nus.edu.sg (Y. Liu), michael.shields@jhu.edu (M.D. Shields).

Probabilistic Engineering Mechanics 47 (2017) 16–25

Available online 20 January 2017
0266-8920/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/02668920
http://www.elsevier.com/locate/probengmech
http://dx.doi.org/10.1016/j.probengmech.2017.01.001
http://dx.doi.org/10.1016/j.probengmech.2017.01.001
http://dx.doi.org/10.1016/j.probengmech.2017.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2017.01.001&domain=pdf


field are the spectral representation method and the Karhunen–Loève
expansion [9]. Both of these involve an infinite sum, which is
unattainable in practice, so a truncated form is used as an approxima-
tion. As a result, the Gaussianity or stationarity may not be strictly
guaranteed [10]; this may, in turn, affect the marginal distribution or
stationarity of the translated non-Gaussian random field.

Various non-translation approaches have also been proposed using,
for example, Markov theory, nonlinear filters and Ito calculus [11],
spectral representation method with dependent variables [12], and
recently higher-order expansions [13]. However, few of these ap-
proaches have been applied for simulating material properties in
two- or three-dimensional models. In this regard, it is a difficult task
to develop a general but easy to implement non-translation approach
for non-Gaussian random fields. This study focuses on a specific type of
random field for material properties; that is, the random field with a
marginal gamma distribution. The gamma distribution has a very
general form such that it includes many other distribution types. For
example, the exponential distribution, chi-squared distribution, and
Erlang distribution are all special cases of the gamma distribution. As a
result, gamma random fields have the potential for relatively broad
usage in practice. In their study of solving two-dimensional (2-D)
elliptic stochastic PDEs, Wan and Karniadakis [14] showed that,
without using the translation in Eq. (1), a homogeneous gamma
random field can be obtained from several Gaussian random fields.
They also derived an analytical relationship between the ACFs of the
Gaussian and gamma random fields. Although Wan and Karniadakis'
[14] approach is a translation-based approach (because it operates by
summing the squares of several Gaussian random fields), it provides a
hint of a conceptually simple non-translation approach, which will be
elaborated in this study. The proposed approach takes advantage of the
additive reproductive property of gamma random variables and has a
simple geometric interpretation that makes it convenient for modelling
material properties. The resulting random field possesses an arbitrary
marginal gamma distribution and a decreasing ACF with a prescribed
scale of fluctuation (SOF, denoted as θ) (see definition of SOF in [15]).

The paper is organized as follows. Section 2 gives an asymptotically
unbiased and consistent estimate of the lower bound of a three-
parameter gamma distribution; the estimation is shown to be physi-
cally reasonable. The algorithm of a 2-D gamma random field is
proposed in Section 3. A generalized form for an m-dimension (m-D)
gamma random field is described in Section 4. Section 5 briefly
discusses extensions to the proposed methodology for anisotropic
fields and to exercise greater control over the ACF. To illustrate its
engineering applications, the proposed algorithm is used to simulate
the spatial variability in the shear strength of soils in a plane strain
slope in Section 6, where random field finite element analysis is used to
evaluate slope stability.

2. Lower-bound estimation for the three-parameter gamma
distribution

A random variable X follows the gamma distribution, if its prob-
ability density function (PDF), fX(x), takes the form:

⎪
⎪

⎧
⎨
⎩

f x x γ( ) = , >

0, otherwise
X

x γ x γ β
β αΓ

( − ) ⋅ exp[−( − ) / ]
⋅ ( )

α
α

−1

(2)

in which γ is the lower bound of X; α > 0 and β > 0 are the shape and
scale parameters, respectively; and Γ(·) is the gamma function. The
gamma distribution is an attractive model for material properties
because it possesses a clearly defined lower bound and can assume a
variety of shapes from strongly skewed to asymptotically Gaussian
when α→∞. However, assigning an appropriate lower bound can be
challenging. Prior to developing the new simulation method, we
propose here a new strategy for estimating the lower bound.

2.1. Proposed method for lower bound estimation

The lower bound γ in Eq. (2) is commonly estimated using
approaches such as maximum likelihood estimators, method of mo-
ments, and their extensions [16–18]. This section proposes an
approach that is conceptually simple and rationally draws from the
minima observed in the data. Its performance is then compared with
the method of moments in the following subsection.

Let X1, X2, …, Xn be a random sample of size n from a gamma
distribution FX(x). For simplicity, this sequence is assumed to be
ordered such that X1 and Xn are the minimum and maximum of the
sequence respectively, and the sample size n is reasonably large (e.g.
larger than 30). It is assumed that the shape parameter α is known, or
can be obtained by the method outlined in [19]. It can be demonstrated
that the following estimate γ̂ yields an asymptotically unbiased and
consistent estimator of the lower bound γ:

γ X α X Xˆ = − ( − )1 2 1 (3)

The proof is similar to that for the lower bound of the beta
distribution [2]. As the minimum of a sample, the CDF of X1 is given
by:

F x F x( ) = [1 − ( )]X X
n

1 (4)

For a reasonably large sample size n, Eq. (4) asymptotically leads to
the Weibull distribution [20]:
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(5)

in which κ1 is the most probable minimum value, which can be taken as
F n{1/( + 1)}X

−1 [17], and k is the shape parameter for the Weibull
distribution that can be taken as α in Eq. (2) (see Appendix A). It
should be noted that the random variable (–X) also follows the gamma
distribution with upper bound –γ. As such, for a reasonably large
sample size n, the expectations of X1 and X2 may be estimated in a
similar manner as those for Xn and Xn−1 (see [20]):

E X γ
γ κ

α
Γ

α
[ ] = −

−
( 1 )1

1
(6)

E X γ γ κ Γ α
Γ

[ ] = − ( − ) (1/ + 2)
(2)2 1 (7)

where E[·] is the expectation operator. Taking the expectation of both
sides of Eq. (3) and utilizing the results in Eqs. (6) and (7), we observe
that the estimator is unbiased:

E γ γ[ ˆ]= (8)

Furthermore, as n→∞, both X1 and X2 converge in probability
towards the lower bound γ, which implies that γ̂ equals γ. Thus, γ̂ is
also a consistent estimator.

2.2. Comparison with the method of moments

In cases where α is known, the method of moments can be used to
estimate the lower bound γ [16]:

γ X α S= − × (9)

where γ is the estimator of γ using themethod of moments and X and S
are respectively the sample mean and standard deviation. Taking the
expectation of both sides of Eq. (9) shows that γ also yields an unbiased
estimate for γ.

A comparison between the proposed method in Eq. (3) and the
method of moments in Eq. (9) is conducted through Monte-Carlo
simulations. First, a set of n gamma-distributed random numbers is
generated. The parameters of the gamma distribution are listed as Case
1 in Table 1 and the PDF is shown in Fig. 1. The two methods are both
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