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a b s t r a c t 

Health monitoring data are increasingly collected and widely used for reliability assessment and lifetime pre- 
diction. They not only provide information about degradation state but also could trace failure mechanisms of 
assets. The selection of a deterioration model that optimally fits in with health monitoring data is an important 
issue. It can enable a more precise asset health prognostic and help reducing operation and maintenance costs. 
Therefore, this paper aims to address the problem of degradation model selection including goals, procedure and 
evaluation criteria. Focusing on continuous degradation modeling including some currently used Lévy processes, 
the performance of classical and prognostic criteria are discussed through numerous numerical examples. We 
also investigate in what circumstances which methods perform better than others. The efficiency of a new hybrid 
criterion is highlighted that allows to take into account the information of goodness-of-fit of observation data 
when evaluating prognostic measure. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Degradation modeling in the presence of health monitoring data is 
extremely important for lifetime prognosis and maintenance planning. 
Complex models permit to take advantage of all available information 
and describe precisely the dynamics of degradation. However, these 
models are not easily tractable, and their calibration in the presence 
of data is a burdensome task. On the other hand, a very simple model 
which can be easily fitted to data but can underestimate or overstate 
the uncertainty around the lifetime prediction. This latter can induce 
risks and additional costs in prognosis based decision making and 
maintenance. A useful and suitable degradation model leads to a 
balance between accuracy and tractability, [1,2] . 

The degradation considered as a random phenomenon often has 
a gradual time-continuous trajectory. Regarding the system under 
consideration, the degradation can take values in discrete or contin- 
uous space. For instance, in a crack growth phenomenon, the crack 
length can take infinite possible values as soon as it begins to grow. 
Similarly, a deteriorating production process can have several quality 
states which will impact the production and result of gain or losses. In 
these two cases, the modeling procedure should take into account the 
phenomenon under consideration, see for instance [3–5] . 

This paper focuses on the gradual degradation modeling and progno- 
sis with health monitoring data. When data is available, the important 
issue is to select the model which describes the underlying degradation 
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phenomenon in the best possible way. The data are collected under 
given environmental conditions and may not represent the average 
behavior of the deteriorating system. A suitable model is one who 
can take into account the possibility of extreme behaviors during data 
collection without losing in perspective the real average degradation 
behavior. The final use of the degradation model can largely impact the 
way data is handled, and a model is favored. If the result of modeling 
has a large impact on safety issues, the choice and the procedure are 
not carried out in the same way as if only economic profits or losses 
are taken into account. Similarly, the cost induced by decision policies 
based on different models may influence the model selection. Regarding 
statistical properties, the best candidate is well characterized from data 
trajectories. It can permit fast calibration and straightforward lifetime 
estimation. For more details and examples, refer to [6,7] . 

To be able to discard irrelevant models it is necessary to have some 
prior knowledge about the degradation phenomenon under considera- 
tion. In the presence of such information and degradation data, the goal 
of degradation modeling is to select one model from a set of competing 
models that best captures the underlying degradation process. As it is 
mentioned before the selection criteria depend mainly on the specific 
purpose for which the model can be used, see for instance [5,8] . 

This paper deals partly with Lévy processes [9] and focuses on the 
most commonly used which are Wiener and Gamma processes. Model 
calibration and data fitting of these models have been widely addressed 
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in the fields of finance, biology and engineering [10,11] . However, 
the model selection criteria in the finance and biology field have some 
differences with engineering domain where maintenance and safety 
constraints are significant concerns [5,12,13] . The model selection for 
engineering prediction problems is an important issue but has not been 
generalized and extensively addressed, [14] . 

This paper proposes different criteria for model selection, to avoid 
system failure and with the most reasonable calculation time. First, 
an overview of the considered stochastic processes is given, and their 
use in degradation modeling is underlined. Afterwards, to provide a 
first selection criterion and to continue to outline a methodological 
guide, some widely addressed and well known statistical data fitting 
criteria are pointed out. Their limits and performances are highlighted, 
and new prognostic basis criteria are introduced. To complete the 
methodological task, the proposed procedure is applied to different 
simulated data sets. The behavior, weakness, and performances of the 
model selection are analyzed and discussed. 

The remainder of the paper is as follows. Section 2 describes the 
set of models under consideration. In Section 3 , the criteria for the 
data-based model selection are exposed. Section 4 gives some prognosis 
criteria. Eventually, in Section 5 the proposed models and criteria are 
tested on simulated data. 

2. Stochastic degradation modeling and parameter estimation 

This section focuses on the considered Levy processes in the 
framework of degradation modeling, [12,15,16] . A Lévy process is 
a stochastically continuous process with stationary and independent 
increments. It can be decomposed into the sum of a drifted Brownian 
motion and a jump process such as Gamma or Poisson process. These 
properties make this class of processes a good candidate for degradation 
modeling. In this paper, the widely used Levy processes, particularly 
Brownian and Gamma family, are the models under consideration to 
describe the degradation behavior. They are presented in the following. 

Let us introduce some notations. Let X t be the degradation level of the 
system at time t . Let L be the failure threshold in the sense that the sys- 
tem is supposed to be failed if the degradation level exceeds the level L . 
Let t ps ( L ) be the first passage time of the degradation process to level L : 

𝑡 𝑝𝑠 ( 𝐿 ) = inf { 𝑡 ∈ ℝ 

+ , 𝑋 𝑡 ≥ 𝐿 } . (1) 

The residual useful life time (RUL) at time t given 𝑋 𝑡 = 𝑥 denoted by 
RUL ( x, t ) is the time duration before the first passage time t ps ( L ) starting 
from the degradation level x at t . In the following t ps ( L ) will be denoted 
t ps except in case of ambiguity. 

2.1. Lévy type diffusion process 

To consider a general degradation modeling framework and take 
into account the possible existing physical models, it is natural to 
introduce stochastic differential equations (SDE) based on a standard 
Brownian motions B t : 

𝑑 𝑋 𝑡 = 𝑚 ( 𝑋 𝑡 , 𝑡 ) 𝑑 𝑡 + 𝜎( 𝑋 𝑡 , 𝑡 ) 𝑑𝐵 𝑡 , 

( 𝑚, 𝜎) ∶ ℝ ×ℝ 

+ ↦ ℝ are respectively the drift and the diffusion co- 
efficient. These equations appear at the beginning of 20th century 
in statistical mechanics and have been thoroughly formulated by Itô
[17,18] . Such equations can be derived directly from existing physical 
models by adding Gaussian “white noises ” on measurements. They 
permit a wide range of degradation modeling due to the flexibility of 
the structure and functional parameters. 

In this section, some specific Levy diffusions processes are presented, 
and their interest in degradation modeling is underlined. For each case, 
the differential equation, the related distribution functions, and some 
statistical properties are exposed. 

2.1.1. Wiener process 

The Wiener process is very popular deterioration modeling when 
observations increments vary non-monotonically. The statistical prop- 
erties of the failure time in the case of a Wiener process are studied 
in [19,20] . It has been considered in reliability and lifetime analysis 
widely since the 1970s. Authors in [21] used the Wiener process with 
drift to model accelerated life testing data. In [22,23] the impact of 
measurement errors on the Wiener degradation model of self-regulating 
heating cables is analyzed. Authors in [24–26] also focused on the 
stopping time (failure time) of Wiener deterioration models and ex- 
panded the existing theoretical results in this domain. The Brownian 
motion with non-linear drift has attracted more attention in engineering 
problems and residual lifetime estimation, see for example [27–29] . 

More precisely, a diffusion process in Brownian motion family has 
the following properties. The increments are independent, X t is solution 
of the SDE 𝑑 𝑋 𝑡 = 𝜇( 𝑡 ) 𝑑 𝑡 + 𝜎𝑑𝐵 𝑡 , where 𝜇( t ) is a function of t and B t 

is a standard Brownian motion. The transition probability to 𝑋 𝑡 = 𝑥 

knowing that 𝑋 𝑠 = 𝑦 is given by: 

𝑝 ( 𝑥, 𝑡 |𝑦, 𝑠 ) = 

1 √
4 𝜋𝜎( 𝑡 − 𝑠 ) 

𝑒𝑥𝑝 

( 

− 

( 𝑥 + 𝑀( 𝑡, 𝑠 ) − 𝑦 ) 2 

4 𝜎2 ( 𝑡 − 𝑠 ) 

) 

, (2) 

where M ( t, s ), 𝛾( t, s ) are given by: 

𝑀( 𝑡, 𝑠 ) = − ∫
𝑡 

𝑠 

𝜇( 𝑢 ) 𝑑𝑢, (3) 

The mean and variance values of X t are given by: 

𝔼 [ 𝑋 𝑡 ] = − 𝑀( 𝑡, 0) , Var [ 𝑋 𝑡 ] = 𝜎2 𝑡 (4) 

M 1 : Wiener process with linear drift. This process is the special case of a 
Wiener process when the drift and the variance are not time dependent 
( 𝜇( 𝑡 ) = 𝜇 is constant). This diffusion process which is also a Lévy process 
is suitable for fluctuating degradation records linearly increasing in 
time. It will be referred as M 1 in Section 5 . 

The RUL cumulative distribution function (cdf) for a drifted Brown- 
ian motion given the observation value 𝑋 𝑡 = 𝑥 at the observation time 
t are given as follows [30] : 

𝐹 𝑅𝑈𝐿 ( 𝑥,𝑡 ) 
( 𝑢 ) = Φ

( 

− 𝐿 + 𝜇𝑢 + 𝑥 

𝜎
√
𝑢 

) 

+ 𝑒 
2 𝜇
𝜎2 

( 𝐿 − 𝑥 ) Φ

( 

− 𝐿 − 𝜇𝑢 + 𝑥 

𝜎
√
𝑢 

) 

(5) 

where Φ( · ) is the standard normal cumulative distribution function. 

M 2 : Wiener process with time-dependent drift. This process is the par- 
ticular case of a diffusion process when the degradation process is 
exponentially increasing in time ( 𝜇( 𝑡 ) = 𝑎𝑡 𝑏 ). It will be referred as M 2 
in Section 5 . In this case, the ratio between its drift and diffusion is 
not a constant and also depends on the time. Therefore, it is difficult 
to derive the explicit expression of the RUL distribution. Its evaluation 
requires solving a non-singular Volterra Integral Equation. It can be 
done numerically, see e.g. [31] . 

2.1.2. M 3 : diffusion process with purely time-dependent drift and diffusion 

This process is the particular case of a diffusion process when 𝜇( t ) 
and 𝜎( t ) are time dependent functions independent of X t ). This is suitable 
for a degradation process including random walks with time-dependent 
drift and diffusion terms. In this paper, we consider a special case of the 
purely time dependent drift and diffusion Brownian motion: 𝜇( 𝑡 ) = 𝑐𝑎𝑡 𝑏 

and 𝜎( 𝑡 ) = 

√
2 𝑎𝑡 𝑏 . It will be denoted as M 3 in Section 5 . As the power-law 

drift is proportional with drift, according to [32] , the RUL CDF of the 
process at time t given a degradation level at time t , 𝑋 𝑡 = 𝑥, is derived: 

𝐹 𝑅𝑈𝐿 ( 𝑥,𝑡 ) 
( 𝑢 ) = Φ

( 

− 𝐿 − 𝑐𝛾( 𝑡 𝑝𝑠 , 𝑡 ) + 𝑥 √
2 𝛾( 𝑡 𝑝𝑠 , 𝑡 ) 

) 

+ 𝑒 𝑐( 𝐿 − 𝑥 ) Φ

( 

− 𝐿 − 𝑐𝛾( 𝑡 𝑝𝑠 , 𝑡 ) + 𝑥 √
2 𝛾( 𝑡 𝑝𝑠 , 𝑡 ) 

) 

(6) 

where 𝛾( t ps , t ) is given by Eq. (3) . 
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