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Inference is one key objective in a Bayesian network (BN), and it aims to estimate the posterior distributions of 

state variables based on evidence (observations). While efficient analytical inference algorithms (either approx- 

imate or exact) for BN with discrete variables have been well-established in the literature, the inference in BN 

with continuous variables is still challenging if the BN is non-linear and/or non-Gaussian. In this case we can 

either discretize the continuous variable and utilize the inference approaches for discrete BN; or we have to use 

sampling-based methods such as MCMC for static BN and particle filter for dynamic BN. This paper proposes a 

network collapsing technique based on the concept of probability integral transform to convert a multi-layer BN 

to an equivalent simple two-layer BN, so that the unscented Kalman filter can be applied to the collapsed BN and 

the posterior distributions of state variables can be obtained analytically. For dynamic BN, the proposed method is 

also able to propagate the state variables to the next time step analytically using the unscented transform, based 

on the assumption that the posterior distributions of state variables are Gaussian. Thus the proposed method 

achieves a very fast approximate solution, making it particularly suitable for dynamic BN where inference and 

uncertainty propagation are required over many time steps. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

During the past 30 years, the Bayesian network (BN) has become a 
key method for representation and reasoning under uncertainty in the 
fields of engineering [1,2] , machine learning [3,4] , artificial intelligence 
[5,6] , etc. BN is a directed acyclic graph (DAG) model that represents 
the joint distribution of a set of random variables. In a BN, random vari- 
ables are denoted by nodes (vertices) and their dependence relationships 
are denoted by directed edges (arcs). An edge indicates the conditional 
dependence of the down-stream child node on the up-stream parent 
node(s). This dependence is described mathematically by a conditional 
probability distribution (CPD), which can be a small discrete conditional 
probability table (CPT) where both the child and parent nodes have a 
limited number of possible values, or a continuous distribution where 
the child and/or parent nodes occupy a continuous sampling space of an 
infinite number of possible values. A BN may have different types of ran- 
dom variables as nodes, including discrete and continuous variables of 
different distribution types. The BN is also able to incorporate heteroge- 
neous information, such as operational data, laboratory data, reliability 
data, expert opinion, and mathematical models (physics-based as well 
as empirical) [7] . Based on the earlier discussion, a BN can be denoted 
as ⟨⟨V , E , ⟩P ⟩, where 𝑽 = { 𝑿 , 𝒀 } is the vector of nodes (random vari- 
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ables); X denotes the state variables to be inferred and Y denotes the 
observable variables; E represents the directed edges; and P denotes the 
CPDs for the edges in E . 

The methodology of BN has two main components: inference and 
learning. Inference aims to estimate the posterior distribution of the 
state variables based on evidence. Usually this evidence is the observa- 
tion y of nodes Y , thus the inference is to calculate the posterior proba- 
bility distribution 𝑃 ( 𝑿 |𝒀 = 𝒚 ) . Learning aims to construct the DAG and 
estimate the CPD for each edge based on the data of the random vari- 
ables; thus learning calculates E and P . This paper focuses on inference, 
i.e., calculating 𝑃 ( 𝑿 |𝒀 = 𝒚 ) . The inference is based on Bayes ’ theorem: 

𝑃 ( 𝑿 |𝒀 = 𝒚 ) ∝ 𝑃 ( 𝑿 ) 𝑃 ( 𝒚 |𝑿 ) (1) 

where P ( X ) and 𝑃 ( 𝑿 |𝒀 = 𝒚 ) are the prior and posterior distributions of 
state variables X , and P ( y | X ) is the likelihood function of X . 

The BN explained above refers to a “static ” Bayesian network for 
a time-independent system. To track a time-dependent system whose 
states evolve over time, the concept of BN is extended to a dynamic 
Bayesian network (DBN), which can be considered as a series of static 
BNs, one for each time instant, with additional edges connecting the 
state variables in adjacent time instants. Based on the first-order Markov 
assumption, the state variables of the BN at time t depend only on the 
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state variables of the BN at time 𝑡 − 1 , and this dependence and the 
underlying CPDs are generally assumed to be time-invariant [8] . In ad- 
dition, the observable variable Y t at time t only depends on the state 
variable X t at the same time instant. The following expressions and equa- 
tions can be derived from this first-order Markov assumption: 

𝑿 𝑡 ⊥𝒚 1∶ 𝑡 −1 |𝑿 𝑡 −1 ⇒ 𝑃 
(
𝑿 𝑡 |𝒚 1∶ 𝑡 −1 , 𝑿 𝑡 −1 

)
= 𝑃 

(
𝑿 𝑡 |𝑿 𝑡 −1 

)
𝒚 𝑡 ⊥𝒚 1∶ 𝑡 −1 |𝑿 𝑡 ⇒ 𝑃 

(
𝒚 𝑡 |𝑿 𝑡 , 𝒚 1∶ 𝑡 −1 

)
= 𝑃 

(
𝒚 𝑡 |𝑿 𝑡 

) (2) 

In Eq. (2) , the symbol “⊥” means “independent of ”; thus the first for- 
mula in Eq. (2) denotes that X t is independent of 𝒚 1∶ 𝑡 −1 at a given value 
of 𝑿 𝑡 −1 ; and the second formula denotes that y t is independent of 𝒚 1∶ 𝑡 −1 
at a given value of X t . The inference in DBN is to estimate the prob- 
ability P ( X t | y 1: t ), i.e., the posterior distribution of the state variables 
in the current time instant given observations in the past and current 
time instants. This paper considers inference in both static and dynamic 
Bayesian networks. 

The inference in a DBN is a recursive process across time instants. 
Using Bayes ’ theorem and Eq. (2) , if X t are continuous variables we 
have 

𝑃 
(
𝑿 𝑡 |𝒚 1∶ 𝑡 ) ∝ 𝑃 (𝑿 𝑡 |𝒚 1∶ 𝑡 −1 )𝑃 (𝒚 𝑡 |𝑿 𝑡 , 𝒚 1∶ 𝑡 −1 

)
= 

[
∫ 𝑃 

(
𝑿 𝑡 |𝒚 1∶ 𝑡 −1 , 𝑿 𝑡 −1 

)
𝑃 
(
𝑿 𝑡 −1 |𝒚 1∶ 𝑡 −1 )d 𝑿 𝑡 −1 

]
𝑃 
(
𝒚 𝑡 |𝑿 𝑡 

)
= 

[
∫ 𝑃 

(
𝑿 𝑡 |𝑿 𝑡 −1 

)
𝑃 
(
𝑿 𝑡 −1 |𝒚 1∶ 𝑡 −1 )d 𝑿 𝑡 −1 

]
𝑃 
(
𝒚 𝑡 |𝑿 𝑡 

)
(3) 

In Eq. (3) , 𝑃 ( 𝒚 𝑡 |𝑿 𝑡 , 𝒚 1∶ 𝑡 −1 ) is replaced by P ( y t | X t ) based on the sec- 
ond formula of Eq. (2) ; and 𝑃 ( 𝑿 𝑡 |𝒚 1∶ 𝑡 −1 , 𝑿 𝑡 −1 ) is replaced by 𝑃 ( 𝑿 𝑡 |𝑿 𝑡 −1 ) 
based on the first formula of Eq. (2) . Then Eq. (3) can be rewritten 
as 𝑃 ( 𝑿 𝑡 |𝒚 1∶ 𝑡 ) ∝ [ ∫ 𝑃 ( 𝑿 𝑡 |𝑿 𝑡 −1 ) 𝑃 ( 𝑿 𝑡 −1 |𝒚 1∶ 𝑡 −1 )d 𝑿 𝑡 −1 ] 𝑃 ( 𝒚 𝑡 |𝑿 𝑡 ) , where the 
terms on the right-hand side indicate two components in estimating 
P ( X t | y 1: t ): 

1. Propagate the posterior distribution 𝑃 ( 𝑿 𝑡 −1 |𝒚 1∶ 𝑡 −1 ) obtained at time 
𝑡 − 1 through the transient CPD 𝑃 ( 𝑿 𝑡 |𝑿 𝑡 −1 ) and marginalize over 
𝑿 𝑡 −1 to construct the prior distribution 𝑃 ( 𝑿 𝑡 |𝒚 1∶ 𝑡 −1 ) at time t ; 

2. Calculate the likelihood function P ( y t | X t ) which only utilizes the ob- 
servation at time t . These two components also imply that the state 
variables and observations at earlier time instants can be neglected 
once the prior distribution 𝑃 ( 𝑿 𝑡 |𝒚 1∶ 𝑡 −1 ) at time t is constructed. This 
process is repeated for the BN in each time instant in order to track 
the evolution of the state variables over time. 

Note that if X t are discrete variables, Eq. (3) will be re-derived 
as 𝑃 ( 𝑿 𝑡 |𝒚 1∶ 𝑡 ) ∝ [ 

∑
𝑿 𝑡 −1 

𝑃 ( 𝑿 𝑡 |𝑿 𝑡 −1 ) 𝑃 ( 𝑿 𝑡 −1 |𝒚 1∶ 𝑡 −1 ) ] 𝑃 ( 𝒚 𝑡 |𝑿 𝑡 ) . The implica- 

tion of the two components in the previous paragraph is still valid. Both 
cases (discrete X t vs. continuous X t ) will be discussed in this paper, but 
the proposed algorithm focuses on continuous state variables. 

In Eq. (2) for static BN and Eq. (3) for DBN, the product of the 
prior distribution and the likelihood function is only proportional to 
but not equal to the posterior distribution. Thus a specific inference algo- 
rithm, either exact or approximate, is required to calculate the PDF/PMF 
value of the posterior distribution or generate random samples repre- 
senting the posterior distribution. Fast, analytical inference algorithms 
for static/dynamic BN with discrete variables have been well-developed 
in the literature, but current algorithms for static/dynamic BN with con- 

tinuous variables are either time-consuming or restricted to specific CPDs 
and/or BN topology. 

This paper aims to develop a more general approximate inference 
algorithm for static/dynamic BN with continuous variables. Of course, 
continuous variables can be discretized in order to make use of the meth- 
ods for discrete BN such as junction tree method, but that also introduces 
approximations and subjectivity, especially in deciding the number of 
discrete variables. We can weaken this approximation by increasing the 
number of discretization levels but this would bring intensive compu- 
tation so that the scalability would be affected. In this paper, we are 
interested in developing a fast inference method by directly consider- 
ing continuous variables without considering discretization. The main 

idea of the proposed algorithm is to utilize an auxiliary variable method 
based on the probability integral transform [9,10] to collapse a com- 
plex BN of arbitrary topology to a two-layered BN so that the unscented 
Kalman filter (UKF) can be used for inference. The proposed algorithm 

is analytical and fast, and is applicable to static/dynamic BNs of any 
topology and CPDs as long as the assumption of Gaussian posterior dis- 
tribution is acceptable. 

The rest of the paper is organized as follows. Section 2 gives an 
overview of Bayesian network inference algorithms in the literature. 
Section 3 gives a brief introduction of the unscented Kalman filter, which 
is used in the proposed method. Section 4 develops the proposed method 
and Section 5 provides two numerical examples. 

2. Overview of inference algorithms for static/dynamic BN 

2.1. Static BN 

Exact and approximate inference algorithms for static BNs have been 
developed in the literature, as shown in Fig. 1 . For a static BN with 
discrete variables , exact inference is always possible and available algo- 
rithms include the popular junction tree algorithm [11] , the variable 
elimination algorithm [12] , the arc reversal method [13] , and the dif- 
ferential approach [14] . However, exact inference is computationally 
prohibitive for large networks, thus approximate inference algorithms 
such as loopy belief propagation [15] have been developed to improve 
the computational efficiency. 

For a static BN with continuous variables , if all the root nodes 
(i.e., nodes without parents) have Gaussian distributions and all the 
edges from parent nodes 𝑼 ∈ ℝ 

𝑁 𝑈 to child node V ∈V are linear Gaus- 
sian CPDs such that 𝑃 ( 𝑉 |𝑼 ) ∼ 𝑁( 𝑾 𝑉 𝑈 + 𝝁𝑉 , 𝜎

2 
𝑉 
) where matrix 𝑾 𝑉 ∈

ℝ 

𝑁 𝑈 ×𝑁 𝑈 and vector 𝝁𝑉 ∈ ℝ 

𝑁 𝑈 and variance 𝜎2 
𝑉 
∈ ℝ have been prede- 

fined, then the joint distribution of V is multivariate Gaussian. Inference 
𝑃 ( 𝑿 |𝒀 = 𝒚 ) for this static BN is simply a conditional Gaussian distribu- 
tion and the exact analytical solution can be found in [16] . 

A more general static BN will have non-Gaussian variables, thus a 
sampling-based approximate inference algorithm is needed. The sam- 
pling algorithms can be categorized into importance sampling (IS) and 
Markov Chain Monte Carlo (MCMC) methods. The major difference be- 
tween these two categories is that the IS generates samples indepen- 
dently from an importance function in one shot, while the MCMC meth- 
ods generate samples sequentially thus the next sample depends on the 
current sample. IS has several variants including: 1) the logic sampling 
algorithm [17] where the importance function is the prior distribution of 
BN; and 2) the adaptive importance sampling algorithm [18,19] where 
the importance function is optimized adaptively. Note that these sam- 
pling algorithms are also applicable for static BN with discrete variables. 

As shown in Fig. 1 , usually the stochastic simulation algorithms are 
the only choice for static BN with continuous non-Gaussian variables. 
These sample-based methods are computationally expensive for large 
networks; therefore this paper aims to develop an approximate but an- 
alytical algorithm to improve the efficiency. 

2.2. DBN 

Exact and approximate inference algorithms for the DBN have been 
developed in the literature, as shown in Fig. 2 . For a DBN with discrete 

variables , exact inference is always possible and available algorithms in- 
clude the forward-backward algorithm [20] and the frontier algorithm 

[21] , etc. As shown in Eq. (3) , the inference at time t of the DBN is not 
related to earlier state variables and observations once the prior distri- 
bution of X t are constructed, and the subsequent step is the inference 
for the BN at time t , which is static. Thus the exact inference algorithms 
for static BN can be extended to DBN. Murphy [22] proposed the in- 
terface algorithm by extending the junction tree algorithm to inference 
in DBNs with discrete variables . Approximate inference algorithms for 
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