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a b s t r a c t 

In nuclear reactor fuel performance simulation, fission gas release (FGR) and swelling involve treatment of sev- 

eral complicated and interrelated physical processes, which inevitably depend on uncertain input parameters. 

However, the uncertainties associated with these input parameters are only known by “expert judgment ”. In 

this paper, inverse Uncertainty Quantification (UQ) under the Bayesian framework is applied to BISON code FGR 

model based on Risø-AN3 time series experimental data. Inverse UQ seeks statistical descriptions of the uncertain 

input parameters that are consistent with the available measurement data. It always captures the uncertainties in 

its estimates rather than merely determining the best-fit values. Kriging metamodel is applied to greatly reduce 

the computational cost during Markov Chain Monte Carlo sampling. 

We performed a dimension reduction for the FGR time series data using Principal Component Analysis. We 

also projected the original FGR time series measurement data onto the PC subspace as “transformed experiment 

data ”. A forward uncertainty propagation based on the posterior distributions shows that the agreement between 

BISON simulation and Risø-AN3 time series measurement data is greatly improved. The posterior distributions 

for the uncertain input factors can be used to replace the expert specifications for future uncertainty/sensitivity 

analysis. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The development of advanced computational platforms allows the 
simulation of sophisticated multi-physical phenomena within nuclear 
reactors in a coupled fashion. Current physical phenomenon involved in 
nuclear reactor modeling include neutron transport, thermal-hydraulics, 
fuel performance, and coolant chemistry. Indeed, although the model- 
ing of nuclear reactor systems has made tremendous progress, there are 
always discrepancies between an ideal in silico designed systems and 
real-world manufactured ones. As a consequence, uncertainties must be 
quantified along with the simulation outputs to facilitate optimal design 
and decision making, ensure robustness, performance or safety margins. 
The propagation of input uncertainties to the response Quantities of In- 
terest (QoIs) is known as Uncertainty Quantification (UQ) [1] , which 
plays a vital role in the validation process [2] of a computer model. 

Nuclear reactor fuel performance analysis studies the thermo- 
mechanical behavior of fuel rods and verifies their compliance with 
safety criteria under both normal operation and accidental conditions. 
Various complex phenomena need to be considered in nuclear reactor 
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fuel performance analysis [3] , for example: (1) for fuel: fission prod- 
uct swelling, densification, thermal and irradiation creep, fracture, and 
fission gas production and release; (2) for cladding: cladding plastic- 
ity, irradiation growth, and thermal and irradiation creep; (3) for oth- 
ers: gap heat transfer, mechanical contact, and the evolution of the 
gap/plenum pressure with plenum volume, etc. Examples of some popu- 
lar fuel performance codes are BISON [3] , TRANSURANUS [4] , ENIGMA 

[5] , FRAPCON [6] and FALCON [7] . 
In this work, we focus on the behavior of the fission gases xenon and 

krypton in uranium dioxide fuel, which significantly affect the thermo- 
mechanical performance of the nuclear fuel rods employed in current 
Light Water Reactors (LWRs) due to the following reasons [8,9,10] : 

1. The fission gases tend to precipitate into bubbles after production 
which results in fuel swelling and promotes fuel rod gap closure and 
the ensuing Pellet-Cladding Mechanical Interaction (PCMI). 

2. The released fission gas accumulates in fuel rod free volume, causing 
pressure build-up and thermal conductivity degradation of the fuel 
rod filling gas. 
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3. The precipitated gas bubbles in fuel rod also have a negative effect 
on the fuel thermal conductivity, and consequently the temperature 
distribution in the fuel pellet. 

4. The increase of fuel temperature will in turn lead to higher amount 
of released fission gases which forms a positive feedback, potentially 
leading to fuel rod failure due to cladding ballooning and cladding 
burst under accidental reactor conditions. 

The accurate modeling of fission gas behavior in nuclear fuel perfor- 
mance simulation is vital considering its detrimental nature. However, 
the numerical analysis of fission gas release (FGR) and swelling involves 
treatment of several complicated and interrelated physical processes, 
which inevitably depend on uncertain input parameters. For example, 
the state-of-the-art fuel performance code BISON [3,11,12,13] incorpo- 
rates an advanced physics-based FGR model that depends on several 
model parameters whose uncertainties are only known by expert judg- 
ment [10] . This poses difficulties and leads to inaccuracies in uncer- 
tainty and sensitivity analysis of BISON. 

The objective of this paper is to inversely quantify the uncertain- 
ties associated with such model parameters in BISON FGR model based 
on available experimental data. Inverse UQ seeks statistical descriptions 
of the uncertain input model parameters that are consistent with the 
observed data, which is sometimes referred to as inverse problem, pa- 
rameter estimation/inference, or Bayesian calibration. Calibration is the 
process of adjusting a set of code input parameters so that the agreement 
of the code calculations with a chosen set of experimental data is max- 
imized [14] . Deterministic calibration finds the best-fit point estimation 
while Bayesian calibration , also called statistical calibration [15,16,17] , 
provides statistical descriptions like the distributions. Bayesian calibra- 
tion and inverse UQ employ the same idea especially when Bayesian 
inference and Markov Chain Monte Carlo (MCMC) are to be used. How- 
ever, we would like to address the subtle difference between them. Cal- 
ibration aims at reducing the difference between experiment and model 
prediction 1 , while inverse UQ emphasizes quantifying the uncertainties 
in input parameters. When the computer model produces results that 
agree very well with measurement data, we may conclude that no cali- 
bration is needed. However, the inverse UQ is still required because the 
underlying uncertainties in random input parameters have to be quan- 
tified. In essence, in cases where there is no need to do Bayesian cali- 
bration, inverse UQ may still be necessary and useful. 

Inverse problems have received increasing attention in the model- 
ing & simulation community in practically all branches of engineering 
[19,20,21,22,23] . Representative applications in nuclear engineering 
are [24,25,26,27,28,29,30] . Inverse UQ formulation adopts a Bayesian 
setting [31] and its solutions are the posterior distributions. MCMC 

[32] is usually used to explore the posterior distributions and normally 
tens of thousands of samples are required, which poses challenges for 
computationally prohibitive models as each MCMC sample requires a 
full model execution. This issue is frequently bypassed by using meta- 
models. 

Metamodels are approximations of the input/output relation of a 
computer code/model. They are also called surrogate models, response 

surfaces or emulators . Metamodels are built from a limited number of 
runs of the full model at specially selected values of the random input 
parameters (the so-called experimental design [33,34] ) and a learning 
algorithm. Metamodels usually take much less computational time than 
the full model while maintaining the input/output relation to a desir- 

1 Unlike deterministic calibration, Bayesian calibration does not necessarily result in 

estimation of calibration parameters that can reduce the discrepancy between model sim- 

ulation and field data. This is because Bayesian calibration depends on both prior and the 

likelihood. In cases when the priors give model results that are very different from the 

field data and the data is very limited, Bayesian calibration is unlikely to produce poste- 

riors that are consistent with the data, because the data is insufficient for the posteriors 

to “forget ” the influence of the priors. See [18] for a recently developed approach called 

“consistent Bayes ” which only tries to find parameters which yield model results close to 

the field data. 

able accuracy. Constructing the metamodels normally requires limited 
number of full model runs. Once validated, metamodels can be used to 
perform uncertainty and sensitivity analysis, validation, optimization, 
etc. See [35,36] for detailed reviews of surrogate models. 

In the current research we built kriging metamodel (also known as 
Gaussian Process emulator) [37,38] for the BISON code during inverse 
UQ. The uncertainties in the model parameters of BISON FGR model are 
inversely quantified based on Risø-AN3 benchmark FGR time series data 
[39,40] . Because the shapes of FGR time series between measurement 
and BISON simulation are significantly different, we propose to perform 

the inverse UQ process in a reduced space formulated with Principal 
Component Analysis (PCA), thereby avoiding the issue of dealing with 
high-dimensional output and difficult convergence of MCMC sampling. 

This paper is organized in the following way. Section 2 presents the 
Bayesian formulation for inverse UQ. In Section 3 , the theory for kriging 
will be presented. BISON FGR model and Risø-AN3 benchmark will be 
introduced in Section 4 . Section 5 briefly discusses how PCA for dimen- 
sion reduction is implemented in the current research. Sections 6 and 
7 present the results and conclusions, respectively. 

2. Inverse UQ problem formulation 

Consider a forward computer model 𝒚 𝑀 = 𝒚 𝑀 ( 𝐱, 𝛉) where y M is 
the model output which can be either a scalar or vector, 𝐱 = 

[ 𝑥 1 , 𝑥 2 , … , 𝑥 𝑟 ] T is the vector of controllable input variables (also called 
design variables ), and 𝛉 = [ 𝜃1 , 𝜃2 , … , 𝜃𝑑 ] T is the vector of calibration pa- 

rameters . Examples of design variables are initial conditions (ICs) and 
boundary conditions (BCs). Calibration parameters, according to the 
definition in [15,41] , are physical parameters that are specified as in- 
puts to the computer model but are unknown or not measureable when 
conducting the physical experiments. Another broader definition for cal- 
ibration parameters has also been used, e.g. [23] , which include physi- 
cal constants, context-specific constants, and tuning parameters that are 
needed to make the model perform well. Examples of calibration param- 
eters are physical model parameters like material properties, and tuning 
parameters like multiplicative or additive factors. Design variables are 
usually required by both model simulation and field experiments, while 
calibration parameters are only needed by the former. In the current re- 
search the calibration parameters in BISON FGR model we are interested 
in are all multiplication factors. 

Suppose that we have experimental observation y E ( x ) which directly 
corresponds to the computer model output. Denoting the real or true 
value of the QoIs by y R ( x ), we have: 

𝒚 𝐸 ( 𝐱 ) = 𝒚 𝑅 ( 𝐱 ) + 𝛆 (1) 

where 𝛆 ∼  ( 𝛍, σ2 
𝜀 
𝑰 ) represents the measurement error. Note that there 

can be multiple measurements and it is widely accepted to have ho- 
moscedastic experimental errors, which means that σ2 

𝜀 
is same for dif- 

ferent measurements. Also, 𝛍 = 0 is frequently used. Since y R ( x ) repre- 
sents the unknown reality, we only have an approximation of it by the 
computer model: 

𝒚 𝑅 ( 𝐱 ) = 𝒚 𝑀 

(
𝐱, 𝛉∗ 

)
+ δ( 𝐱 ) (2) 

where 𝜽∗ is the exact but unknown value for the calibration param- 
eters, the learning of which is the goal of inverse UQ process. 𝛿( x ) is 
the model bias , also called model discrepancy, model inadequacy or model 

uncertainty [15,41,42] . The model bias term always exists because all 
computer models are reduced representations of the reality. Causes of 
the model bias are incomplete description of the underlying physics, nu- 
merical approximations, and other inaccuracies that would exist even if 
all the parameters in the computer model were known. The model bias 
is first addressed in the seminal work of Kennedy and O’Hagan [15] . It is 
important to consider model bias as otherwise we would have an unreal- 
istic level of confidence in the computer model predictions (model will 
equal reality in Eq. (2) if model bias is not considered). By accounting 
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