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a b s t r a c t 

Variance-based sensitivity analysis with dependent variables represents how the uncertainties and dependence 

of variables influence the output uncertainty. Since the distribution parameters of variables are difficult to be 

given precisely, this work defines the derivative-based sensitivity of variance contribution with respect to the 

distribution parameters, which reflects how small variation of distribution parameters influences the variance 

contributions. By introducing the copula functions to describe the dependence of variables, the derivative of 

variance contributions can be transformed into those of marginal PDF and copula function, which can be defined 

by kernel function and copula kernel function. Then the derivative-based sensitivity of variance contributions 

can be decomposed into the independent part and dependent part. Since the derivatives of marginal PDF and 

copula function can be given analytically, the proposed derivative-based sensitivity can be computed with no 

additional computational cost, which is seen as the ‘by-product ’ of variance-based sensitivity analysis. To calculate 

the proposed sensitivity, two computational methods, numerical method and SDP (state dependent parameter) 

method are presented for comparison. Several examples are used to demonstrate the reasonability of the proposed 

sensitivity and the accuracy of the applied method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Sensitivity analysis (SA) provides an important tool to explore the 
complex model behaviors, and it is often critical towards understand- 
ing the physical mechanisms and modifying the design to mitigate and 
manage risk [1] . Generally, sensitivity analysis can be classified into two 
groups: local SA and global SA [2] . Local SA usually investigates how 

small variations of one or multiple distribution parameters around their 
reference point changes the value of the output. One classical local SA is 
the derivative-based SA by defining the derivative of probabilistic statis- 
tics of output with respect to the distribution parameters of variables. 
The main drawbacks of the derivative based SA are that it depends on 
the choice of the reference point [3] and it can be quite expensive if large 
number of inputs are considered. Global SA studies how the uncertainty 
in the output of a computational model can be decomposed according to 
the input sources of uncertainty [4–7] . Contrary to the local SA, global 
SA explores the whole range of uncertainty of the model variables by 
letting them vary simultaneously. At present, the variance-based SA is 
the most popular global SA technique which has been applied to design 
under uncertainty problems and are capable of identifying the contribu- 
tions of any variable [8,9] . 
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Traditionally, the variance-based SA are investigated in the case 
of independent variables and the well-rounded methodology has been 
established by many scholars [4–7] . However, in many cases, the 
marginal variables are dependent with each other, and the dependence 
of variables may lead to a different ranking of variance-based sensi- 
tivity indices. Thus, for the case of dependent variables, Saltelli et al. 
[10,11] proposed approaches to perform the SA with dependent vari- 
ables, but these researches only provide an overall sensitivity of one 
variable, which cannot distinguish the independent or dependent influ- 
ence of one variable. To make a better understanding of the dependence 
in variance-based SA, Xu and Gertner [12] and Li et al. [13,14] divided 
the variance contribution of individual variable into the independent 
part and the dependent part, but this approach is constructed based on 
the approximation of linear model. Li et al. [15] decomposed the to- 
tal variance contribution of one variable or a set of variables into the 
structural contribution and correlative contribution based on the covari- 
ance decomposition, which can deal with both the linear and nonlinear 
models. Mara and Tarantola [16] proposed a set of variance-based sen- 
sitivity indices based on a specific orthogonalization of the variables 
and ANOVA-representation of model output. Kucherenko et al. [17] pro- 
posed the generalized sensitivity indices which can preserve the advan- 
tages of the original variance-based sensitivities without necessity of de- 
termining functional decomposition or orthogonalization of the variable 
space. Therefore, for the models with or without the dependence in the 
variables, a comprehensive research of the variance-based SA has been 
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investigated and different sensitivity indices are proposed to measure 
the contributions of interests. 

Nevertheless, it is noticed that in the variance-based SA with or with- 
out dependence, the distribution parameters of variables are assumed to 
be available precisely. But the distribution parameters are always esti- 
mated, measured with uncertainty, or guesses [18,19] , if the variation 
of one distribution parameter leads to a considerable change to the vari- 
ance contributions, the computational results of the variance based SA 

will be vulnerable and less reliable. Thus, it is significant to identify 
how the distribution parameters influence the variance contributions. 
For the models with independent variables, the derivative-based sen- 
sitivity are proposed in references [20,21] by defining the derivatives 
of variance contributions with respect to the distribution parameters, 
which can provide the information on how small variation of the dis- 
tribution parameter around the reference point changes the results of 
the variance contributions. By introducing the kernel function (or score 
function) of marginal distributions, the computation of the derivatives 
of variance contributions can be transformed into that of the deriva- 
tives of marginal distributions which needs no additionally computa- 
tional cost. While for the models with dependent variables, the existing 
variance-based SA are mainly discussed based on the Pearson correlation 
coefficient [12–17] , thus the definition of derivative-based sensitivity of 
variance contributions brings a challenge that it needs to compute the 
derivatives of joint distributions and conditional distributions, which 
are difficult to be achieved. 

To overcome this deficiency, this work sets out from the copula the- 
ory, which is used as an important approach to describe the dependence 
of variables for decades [22–27] . Copula functions are used to com- 
bine the joint distributions with marginal distributions, thus the deriva- 
tives of joint distributions can be transformed into those of copula func- 
tions and marginal distributions. Since the common copula function and 
marginal distribution are always given analytically, their derivatives 
can be achieved conveniently. Therefore, for the models with depen- 
dent variables, the derivative-based sensitivity of variance contributions 
can be also computed with no additional computational cost. More im- 
portantly, the derivative-based sensitivity of variance contributions can 
be divided into two parts: one depends on the copula function and the 
other depends on the marginal distributions, which can make a clear 
insight for the effect of the dependence of variables. While for the com- 
putation of the proposed sensitivity, since a great number of approaches 
have been presented to perform the variance-based SA [5–9] , this work 
mainly use the SDP method, which has been already used to compute 
the variance-based sensitivity indices with or without the dependence 
of variables [28,29] . 

The remainder of this work is organized as follows: Section 2 gives 
a brief review of variance-based SA and proposes the definition of the 
derivative-based sensitivity of variance contributions. Section 3 intro- 
duces the copula theory first, then makes an analytical derivations for 
the proposed sensitivity of variance contributions with copula functions. 
Since the copula function and marginal distributions can be achieved 
analytically, Section 4 gives the analytical expressions of the deriva- 
tives of frequently-used copula functions and marginal distributions. In 
Section 5 , the Monte Carlo method and SDP method are used to compute 
the proposed sensitivity of variance contributions. In Section 6 , numeri- 
cal examples are first employed to validate the proposed sensitivity and 
computational methods, then one engineering practice of roof truss is 
analyzed. Finally, some conclusions are given in Section 7 . 

2. Sensitivity of variance contributions 

2.1. Brief review of variance-based sensitivity 

Consider a square integrable function 𝑌 = 𝑔( 𝑿 ) defined in the hy- 
percube H 

d , where 𝑿 = ( 𝑋 1 , 𝑋 2 , ..., 𝑋 𝑑 ) are d -dimensional independent 
variables. According to the idea of HDMR (high-dimensional model rep- 

resentation), the function g ( X ) can be expanded into terms of increasing 
dimensions: 

𝑔( 𝑿 ) = 𝑔 0 + 

𝑑 ∑
𝑖 =1 

𝑔 𝑖 ( 𝑋 𝑖 )+ 

𝑑 ∑
1 ≤ 𝑖<𝑗≤ 𝑑 

𝑔 𝑖𝑗 ( 𝑋 𝑖 , 𝑋 𝑗 )+ ⋯ + 𝑔 1 , 2 ,...,𝑑 ( 𝑋 1 , 𝑋 2 , ..., 𝑋 𝑑 ) 

(1) 

This decomposition is unique when all the terms are orthogonal and 
with an expectation of zero (except for g 0 ) [4] . As a consequence, these 
terms can be calculated by the conditional expectations of the model 
output, which can be given as: 

𝑔 0 = 𝐸( 𝑦 ) 

𝑔 𝑖 = 𝐸( 𝑦 |𝑥 𝑖 ) − 𝑔 0 

𝑔 𝑖𝑗 = 𝐸( 𝑦 |𝑥 𝑖 , 𝑥 𝑗 ) − 𝑔 𝑖 − 𝑔 𝑗 − 𝑔 0 (2) 

where the higher-order items can be obtained analogously. 
In order to qualify the contribution of variables to the uncertainty of 

output, the variance-based sensitivity indices proposed by Sobol [7] are 
defined as 

𝑆 𝑖 1 ⋯ 𝑖 𝑘 
= 

𝑉 ( 𝑔 𝑖 1 ⋯ 𝑖 𝑘 
) 

𝑉 ( 𝑌 ) 
(3) 

where k represents the order of the sensitivity index. Specially, the most 
popular first-order sensitivity index is given as 

𝑆 𝑖 = 

𝑉 𝑖 

𝑉 
= 

𝑉 ( 𝑔 𝑖 ) 
𝑉 ( 𝑌 ) 

= 

𝑉 ( 𝐸( 𝑌 |𝑋 𝑖 )) 
𝑉 ( 𝑌 ) 

(4) 

where 𝑉 𝑖 = 𝑉 ( 𝐸( 𝑌 |𝑋 𝑖 )) is the first-order variance contribution. 
In the case of independent variables, the first-order sensitivity in- 

dex S i indicates how much one could reduce, on average, the output 
variance if X i could be fixed. However, when the dependence is present 
among variables, the variance contribution V i of an individual variable 
X i consists of not only the contribution resulting from the variable it- 
self, but also contains the dependent contribution resulting from the 
dependence between variable X i and other variables. For this case, a 
large amount of literature [12–17] is presented to discuss the variance 
contributions V i with dependent variables, and make a clear distinction 
between the independent contribution and dependent contribution of 
variable X i . Therefore, this work focuses on investigating the sensitivity 
of the variance contribution with dependent variables. 

2.2. Definition of the sensitivity of variance contribution 

As discussed in Section 1 , sensitivity of variance contribution can be 
defined as the derivative of the variance contribution with respect to the 
distribution parameters. Without any lack of generality, it is supposed 
that each variable possesses only one distribution parameter 𝜇i (actu- 
ally, the common distributions possess more than one parameter, i.e. 
normal distribution possesses the mean value and standard deviation) 
in order to simplify the notation in the following. 

Before measuring the influences of distribution parameters on the 
variance contributions, those on the total variance should be investi- 
gated at first. This is because the total variance consists of various vari- 
ance contributions, if the distribution parameters have no significant 
effect on the total variance, whatever contributions will appear would 
not matter. Thus, the derivative-based sensitivity of total variance can 
be defined as 

𝑆 𝑉 𝜇𝑖 
= 

𝜕𝑉 

𝜕 𝜇𝑖 
(5) 

The derivative-based sensitivity 𝑆 𝑉 𝜇𝑖 
can identify the influential dis- 

tribution parameters which are worthy to be investigated further for the 
variance contributions. 

Then, in order to measure the influences of distribution parameters 
on the variance contributions with dependent variables, the derivative- 
based sensitivity of variance contribution V i is defined as 

𝑆𝑉 𝐶 

𝑖 
𝜇𝑗 

= 

𝜕 𝑉 𝑖 

𝜕 𝜇𝑗 
(6) 
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