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a b s t r a c t 

This paper presents the solution of Markov chain reliability models with a large state-space. To specify a system 

reliability model, we use our previously proposed methodology, which is based on the Stochastic Automata 
Networks formalism. We model parts of the system by arrowhead matrices with functional transition rates. As 
a result, the infinitesimal generator matrix of the reliability model has a distinctive structure. In this paper, we 
demonstrate that a block Gauss–Seidel method can be applied very efficiently to such a structure. The application 
of the proposed methodology is illustrated by an example of a standard 3/2 substation configuration. Even though 
its Markov chain reliability model has almost two million states, its steady-state probabilities can be estimated 
in just a few seconds of CPU time. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Markov chains are one of the most often applied stochastic processes 
in system reliability models [1,2] . Application of Markov chains in re- 
liability modelling include such diverse examples as analysis of soft- 
ware reliability [3] , maintenance of road networks [4] , and evaluation 
of reliability of small electronic components [5] or electrical power 
transmission systems [6] . As compared to the methods based on the 
independence of system components (e.g. fault tree analysis or relia- 
bility block diagrams), Markov models can be applied to systems with 
more complex behaviour, such as dependent failures or repairable items 
[7] . Moreover, unlike simulation-based techniques (e.g. a Monte Carlo 
method), Markov chain modelling is a stochastic analytic method which, 
in theory, can provide an exact solution. However, all the aforemen- 
tioned techniques can be cumbersome and require many computational 
resources, especially if large systems and rare events are considered [8–
11] . This is also true for Markov chains, which are rarely applied in 
reliability modelling of large systems due to an exponential growth of 
state-space. Therefore, most authors apply Markov chains for relatively 
small models, which can be tracked analytically [12–14] . In more com- 
plex cases, special software [15,16] is also applied for model creation 
and numerical solution [17,18] . However, for many real-life problems, 
the state-space of a Markov chain model can be estimated in millions. 
In such a case, the creation and storage of the transition matrix, as well 
as the calculation of steady-state probabilities require special attention. 
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Thus, efficient application of numerical methods is a crucial part of 
Markov chain modelling of large systems. However, it is still rarely ad- 
dressed in reliability modelling studies, and only in a few exceptions can 
one find examples of steady-state solutions of reliability models whose 
state-space exceeds a million [19] . Thus, it seems that well-established 
methods of numerical solution of Markov chain models [20] have not yet 
been extensively applied in reliability modelling studies. So far, the most 
often used approaches in dealing with large Markov models are various 
state-space reduction strategies [21] . Among them, we can mention an 
exclusion of redundant system states and truncation of states with low 

probabilities [22,23] , state aggregation and lumping methods [24,25] or 
some mixture of both these techniques [26] . Another similar approach 
is to decompose a large system into smaller, nearly independent com- 
ponents, and to solve the smaller models separately [27,28] . However, 
these techniques are by definition approximations and exhibit inherent 
solution errors. Only the solution of the complete Markov model can 
provide an exact (as far as computational precision allows) solution, 
thus evaluating all possible scenarios, including all rare events. 

In this study, we address a numerical solution of complete Markov 
chain models, described by the Stochastic Automata Networks (SANs) 
formalism [29] . The SAN formalism applies Kronecker algebra opera- 
tions to store a transition matrix of the Markov chain model in a com- 
pact form, thus mitigating the problem of dimensionality. However, a 
steady-state solution remains a serious problem because Kronecker’s al- 
gebra approach requires a more sophisticated application of standard 
numerical methods [30] . 
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So far, most examples of SANs applications considered queuing sys- 
tem models [31–33] . The use of SANs in system reliability modelling is 
still relatively rare [34,35] and, to our knowledge, the published studies 
did not consider a steady-state probability calculation. In our previous 
paper [36] , we presented a methodology for power system reliability 
specification using the SAN formalism. We demonstrated that various 
reliability scenarios could be described using arrowhead matrices and 
functional transition rates. As a result, the transition rate matrices of the 
created Markov models have a distinctive structure and we proposed 
that it could be advantageous for an efficient estimation of steady-state 
probabilities. However, we did not address this problem in the previ- 
ous study because for the relatively small models presented in [36] it 
was possible to generate the full transition matrix from the SAN de- 
scriptor and to estimate steady-state probabilities using standard direct 
algorithms, such as Gaussian elimination. For larger models, such an ap- 
proach would not be feasible due to operating memory constraints. In 
that case, one must apply various iterative techniques for calculation of 
steady-state probabilities, and we address this problem in this study. 

Our research showed that the distinctive structure of the created re- 
liability models allows us to apply a block Gauss–Seidel method very ef- 
ficiently. That is, due to the high fidelity of system components, steady- 
state solution of power systems described by arrowhead matrices con- 
verges very rapidly when using the Gauss–Seidel algorithm. In addi- 
tion, the specific block structure arising from the SAN formalism is very 
suitable for block-iterative methods. Moreover, the analytical research 
showed that inner iteration of the block Gauss–Seidel method can be 
solved very efficiently. Numerical experiments supported the analytical 
results and the block Gauss–Seidel method outperformed other standard 
methods in solving steady-state probabilities of a representative Markov 
model of a 3/2 substation configuration with nearly two million states. 

The structure of this paper is as follows. An introduction to the 
steady-state solution of Markov chain models is presented in Section 2 . 
In Section 3 , we explain the choice of the block Gauss–Seidel method 
for the steady-state solution, based on the structural properties of the 
model transition matrix. In Section 4 , we present the efficient implemen- 
tation of the block Gauss–Seidel method specially modified for models 
described by the SAN formalism and arrowhead matrices. In Section 5 , 
we present the SAN specification of the 3/2 substation configuration 
using the methodology proposed in [36] . This model is later used in 
Section 6 as a case study to illustrate the efficiency of the proposed im- 
plementation of the block Gauss–Seidel method. 

2. Steady-state solution of Markov chain models 

In this section, we briefly introduce the theoretical background and 
numerical solution methods for steady-state calculations of Markov 
chain models. For more information, we refer the reader to [20,37] . 

2.1. Estimation of steady-state probabilities 

Most examples in Markov chain reliability modelling consider er- 
godic continuous time Markov chains with a finite number of system 

states. Basically, such a system can be defined by its transition rate ma- 
trix (i.e. an infinitesimal generator) Q . In reliability models, transition 
rates would mainly describe failure and repair rates of various system 

components. A steady-state transition (row) vector 𝝅 can be estimated 
from the following equation 

𝛑 ⋅𝐐 = 𝟎 , (1) 

where 0 denotes a row vector consisting of zeros. 
An ergodic Markov chain Q is a singular matrix, i.e. its rank is equal 

to ( 𝑛 − 1 ) if n is the size of the state-space. Thus, an additional condition 
is used 

𝛑 ⋅ 𝐞 = 1 , (2) 

where e denotes a column vector consisting of ones. Basically, it means 
that the sum of all steady-state probabilities is equal to 1. 

It can be seen from (1) and (2) that computation of steady-state prob- 
abilities is basically a solution of a linear system of equations, or, equiv- 
alently, the computation of a left-side eigenvector. While it is not a par- 
ticularly difficult task for a small infinitesimal generator Q , problems 
arise when the size of the matrix Q is counted in thousands or even 
millions. 

There are three big classes of algorithms for the calculation of steady- 
state probabilities: direct methods, iteration methods and projection 
methods. 

1) Direct methods compute a solution of a system of linear equations 
in a fixed number of operations. In theory, they will compute an 
exact solution, if there are no round-off errors. The best-known di- 
rect method is the classical Gaussian elimination algorithm and its 
variations, such as LU decomposition. The main drawback of the di- 
rect methods is a fill-in of zero elements during the reduction phase, 
which makes them incompatible with sparse and compact storage 
schemes. Such an alteration of the infinitesimal generator matrix 
makes direct methods inapplicable for large problems because of 
computer memory constraints and a build-up of rounding errors. 
However, direct methods can be successfully applied for relatively 
small problems (less than 10,000 states) or some specific problems, 
for example, when banded storage schemes can be implemented. 

2) Iterative methods are based on the property of successive conver- 
gence to the desired solution from an initial iteration vector. The 
most popular iterative algorithms are the methods of Jacobi, Gauss–
Seidel, successive over-relaxation (SOR) and the power method. 
The main advantage of iterative algorithms, as compared with direct 
methods, is that an infinitesimal generator matrix is not transformed 
during the solution. This means that sparse storage schemes can be 
successfully implemented, which extends the number of states to at 
least hundreds of thousands. In addition, it prevents the build-up of 
rounding errors, which increases the stability of the algorithms. It is 
also worth mentioning that the implementation of standard iterative 
methods is relatively easy (especially compared with more advanced 
projective methods) and it does not require a deep knowledge of 
linear algebra. 
The main disadvantage of iterative methods is that convergence to 
the solution is not always guaranteed or it can be very slow, espe- 
cially for practical engineering and industrial problems. 

3) Projection methods are advanced iterative techniques, based on 
the approximation of an exact solution by a relatively small sub- 
state of vectors. Some methods theoretically will compute an ex- 
act solution in n steps, but practically a desirable solution can be 
found in a much smaller number of steps. The projection methods 
include Krylov subspace methods, such as the Arnoldi algorithm 

or generalised minimal residuals (GMRES) method for eigenvalues. 
Conjugate gradient squared (CGS), biconjugate graduate stabilized 
(BiCGStab) and transpose-free quasi-minimal residuals (TFQMR) are 
also among suitable methods to calculate steady-state probabilities. 

Projection methods can be successfully applied for solving large sys- 
tems of linear equations, but some problems exist. For example, the use 
of projection methods does not guarantee regular convergence and the 
methods can sometimes break down. Moreover, as for iterative meth- 
ods, the convergence rate can be very slow for realistic engineering and 
industrial applications. 

Thus, a variety of different techniques can be applied for the cal- 
culation of steady-state probabilities, but there are no general rules on 
how to find the most suitable method for a given problem. However, 
if an algorithm somehow ‘considers ’ the special properties of a Markov 
chain model structure, it can significantly outperform other numerical 
methods [38] . Therefore, an experimental and analytical investigation 
is needed for each distinct type of problem. 
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