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Traditional methods for model validation assessment mainly focus on validating a single response. However, for 

many applications joint predictions of the multiple responses are needed. It is thereby not sufficient to validate the 

individual responses separately, which ignores correlation among multiple responses. Validation assessment for 

multiple responses involves comparison with multiple experimental measurements, which makes it much more 

complicated than that for single response. With considering both the uncertainty and correlation of multiple 

responses, this paper presents a new method for validation assessment of models with multivariate output. The 

new method is based on principal component analysis and the concept of area metric . The method is innovative in 

that it can eliminate the redundant part of multiple responses while reserving their main variability information in 

the assessment process. This avoids directly comparing the joint distributions of computational and experimental 

responses. It not only can be used for validating multiple responses at a single validation site, but also is capable 

of dealing with the case where observations of multiple responses are collected at multiple validation sites. The 

new method is examined and compared with the existing u-pooling and t - pooling methods through numerical and 

engineering examples to illustrate its validity and potential benefits. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the rapid development of computers ’ abilities, an increasing 

number of computational models have been established for simulat- 

ing the system behavior and supporting decision instead of the expen- 

sive physical experiments in many research fields, such as risk analysis 

[1–3] , engineering design and performance estimation. The increased 

dependence on using computational simulation models in engineering 

presents a critical issue of confidence in modeling and simulation ac- 

curacy. Verification and validation (V&V) are the primary means to as- 

sess accuracy and reliability of computational simulations in engineer- 

ing. Verification is the process of determining that a model implementa- 

tion accurately represents the developer’s conceptual description of the 

model and the solution to the model. Validation is the process of deter- 

mining the degree to which a model is an accurate representation of 

the real world from the perspective of the intended uses of the model 

[4] . That is, verification addresses the accuracy of the numerical solu- 

tion produced by the computer code as compared to the exact solution 

of the conceptual model. In the verification, how the conceptual model 

relates to the ‘‘real world ’’ is not an issue. Validation addresses the ac- 

curacy of the conceptual model as compared to the ‘‘real world ’’, i.e., 

experimental measurements [4–7] . As Roache [8] stated, “verification 

deals with mathematics, while validation deals with physics ’’. In gen- 

eral, code verification and numerical error estimation which are the two 
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types of model verification activities should be completed before model 

validation activities are conducted or at least before actual comparison 

of computational results are made with experimental results [4–7] . The 

reason is clear. We should have convincing evidence that the computa- 

tional results obtained from the code reflect the physics assumed in the 

models implemented in the code and that these results are not distorted 

or polluted due to coding errors or large numerical solution errors. As 

pointed out in literatures [7,9] , if a researcher/analyst does not provide 

adequate evidence about code verification and numerical error estima- 

tion in a validation activity, the conclusions presented are of dubious 

merit. If conclusions from a defective simulation are used in high con- 

sequence system decision-making, disastrous results may occur. After 

decades-long development, while verification is well established, rigor- 

ous model validation assessment is not. In the present work, we also 

restrict our attention to model validation assessment. 

Various model validation methods have presently been developed 

for assessing model validity. These methods are generally classified into 

four categories [10] : classical hypothesis testing [11] , Bayesian factor 

[12,13] , frequentist’s metric [7,14] and area metric [9] . Classical hy- 

pothesis testing mainly focuses on determining which of the two alterna- 

tive propositions (where the null hypothesis usually is that the model is 

correct and the alterative one is that the model is not correct.) is correct. 

It cannot assesse the quantitative accuracy of a model. The Bayesian fac- 

tor approach is primarily interested in evaluating the probability (i.e., 
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the belief) that the model is correct by incorporating an analyst’s prior 

belief of model validity. Although it has some advantages over the clas- 

sical hypothesis testing method, the Bayesian approach still cannot pro- 

vide quantitative accuracy of the model, but gives a “yes ” or “no ” answer 

[9] . Different from the classical hypothesis testing and Bayesian factor, 

the frequentist’s metric can help to quantitatively assess the adequacy of 

the given model for an application of interest. However, the main lim- 

itation of this method is that it is based on comparing means or other 

summary statistics (e.g. the maximum values) of the experimental data 

and model predictions. Thus, it considers only the central tendencies or 

other specific behaviors of data and predictions rather than their en- 

tire distributions. With this consideration, Ferson et al. [9] proposed an 

area metric method which assesses the accuracy of the given model by 

comparing the difference between the cumulative distribution function 

(CDF) of the model predictions and the empirical CDF of experimental 

data. This method can provide an objective assessment of the model ac- 

curacy by considering the entire distributions of the model predictions 

and experimental data. It generalizes the frequentist’s metric method to 

validation assessment that focuses only on the mean behavior or other 

summary statistics of predictions and observations. More importantly, 

by employing the u-pooling technique to incorporate the experimen- 

tal data collected at multiple validation sites into a single metric, the 

method in [9] can be used to assess the overall performance of a model 

against all the experimental data in the validation domain. Here, a vali- 

dation site is a specific setting of the model input variables at which the 

accuracy of a model is validated against the measured quantities. 

In spite of numerous advantages, Ferson’s area metric method is 

based on comparison of the marginal distributions of the model pre- 

dictions and experimental data. It, thus, is only suitable for validation 

assessment of models with single response or with multiple uncorrelated 

responses [15] . In practice, however, correlated multiple responses are 

often of interest. For instance, multiple response quantities, like stress, 

strain and displacement, etc., often are predicted simultaneously from 

the same experiment at a single location. These different quantities are 

correlated, since they are based on the same inputs. On the other hand, 

the interested model responses from the same experiment may change 

with location (in space or time coordinate). In this case, there is a strong 

correlation between any pair of response quantities from the same ex- 

periment. Model validation assessment for multiple correlated response 

quantities is much more complicated than that for single response, as 

it needs to consider both uncertainty and correlation of the multiple 

responses in the validation assessment process. 

Validation assessment with “multivariate data ” has drawn attention 

of the scientists in meteorological and climate community for decades 

[16–19] , where verification and validation are combined in one veri- 

fication process. Many methods, such as the minimum spanning tree 

(MST) histograms, multivariate rank (MVR) histograms and bounding 

boxes (BBs) [16,17] , have been developed in this community to assess 

the multidimensional ensemble reliability of their forecasts within the 

context of high-dimensional multivariate data. The bounding boxes in 

BBs approach are defined by the minimum and maximum values of an 

ensemble forecast. They, thus, are unduly affected by outliers and may 

fail in characterizing the bulk ensemble properties appropriately [16] . 

Both the MST histograms and MVR histograms are based on the reliabil- 

ity criterion that the ensemble members should be statistically indistin- 

guishable from the observations. This is similar to that underlying the 

u-pooling technique. From that, insights can be gained into the average 

dispersion characteristics of the multidimensional ensemble forecasts. 

In the context of engineering community, classical hypothesis test- 

ing and Bayesian factor have been extended to validation assessment 

of models with multivariate output [20,21] . These methods, however, 

inevitably inherit their disadvantages in univariate case. That is, they 

cannot provide quantitative accuracy of the model, but give a “yes ” or 

“no ” answer. One intuitive and straightforward method which can ac- 

count for both uncertainty and correlation of the multiple responses is 

directly comparing the joint CDF of the model predictions and the mul- 

tivariate empirical CDF of experimental data. Nevertheless, in many en- 

gineering cases, experimental observations are usually very sparse due 

to the expense of full-scale physical experiments. This means that the 

correlation structure of experimental data is poorly known. Thus, the 

multivariate empirical CDF used for capturing correlation information 

in the data will be a very poor representation of what actually exists in 

the real physical system. Even if the experimental data are sufficiently 

collected, the method would still suffer severely from the “curse of di- 

mensionality ” when computing the high-dimensional integration in the 

metric. 

To provide a quantitative assessment for the accuracy of the com- 

putational models with correlated multivariate output with considering 

both the uncertainty and correlation, Li et al. [15] proposed two valida- 

tion metrics (A validation metric is a formal measure of the mismatch 

between predictions and experimental data.) by extending the idea of 

area metric and u-pooling method. They are probability integral transfor- 

mation ( PIT ) area metric for a single validation site and t-pooling metric 

for multiple validation sites. Both the metrics are based on the multi- 

variate PIT theorem. Although this method can take into account both 

the uncertainty and correlation of the multivariate output in the process 

of model validation assessment, it still requires estimating the joint CDF 

of model responses to transform the multivariate experimental observa- 

tions. This is often unavailable for high-dimensional response space. 

In this paper, a new method is proposed for the validation assess- 

ment of models with multiple correlated responses based on the princi- 

pal component analysis (PCA) and the idea of area metric. By the PCA, 

the correlated multiple output responses are transformed into a set of or- 

thogonal principal components (PCs) with the first few PCs containing 

nearly all the variability of the multiple outputs. Then the area met- 

ric can be applied to each PC to obtain the corresponding validation 

metric value. The total model validation metric is obtained by aggre- 

gating these validation metric values of PCs with their corresponding 

PCA weights. With the proposed method, validation assessment of mod- 

els with correlated multiple high-dimensional responses can be decom- 

posed into a series of model validation assessments in independent one- 

dimensional space. This allows considering both the uncertainty and 

correlation of the multiple responses without estimating their joint CDF. 

Thus, it is more feasible for the practical applications. 

The rest of the paper is organized as follows. Section 2 briefly re- 

views the existing area metric and u-pooling technique. The theory of 

the proposed method is detailed in Section 3 . In Sections 4 and 5 , an 

illustrative mathematical example and a simple risk analysis model are 

respectively used to show the advantages of the proposed method by 

comparing with the existing ones. The proposed method is also applied 

to an engineering model where the experimental data are assumed to 

be sparse in Section 6 . Section 7 discusses some practical issues in the 

application of the proposed method and the future works to be done. 

Finally, the conclusions come at the end of the paper. 

2. Review of the area metric and u-pooling based metric 

For the relevant system response quantity (SRQ) y , let F m ( y ) denote 

the CDF of y predicted by the computational model at a single valida- 

tion site, and 𝑆 

𝑒 
𝑛 
( 𝑦 ) represent the empirical CDF of the corresponding 

experimental data of y . In F m ( y ) and 𝑆 

𝑒 
𝑛 
( 𝑦 ) , the superscripts m and e rep- 

resent “model ” and “experiment ”, respectively and the subscript n is the 

sample size of the data set (Note that since the experimental data are of- 

ten sparse, empirical CDF is usually used to represent their uncertainty 

which is an exact representation of the data regardless of the amount 

of data, and does not require any assumptions [9] . In the case where 

predictions are also sparse, empirical CDF is also used for describing 

the uncertainty of predictions). As shown in Fig. 1 , area metric uses the 

area between the prediction distribution F m ( y ) and the data distribution 

𝑆 

𝑒 
𝑛 
( 𝑦 ) as the measure of the mismatch between the model and the data. 
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