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A B S T R A C T

As the size of engineered systems grows, problems in reliability theory can become computationally challenging,
often due to the combinatorial growth in the number of cut sets. In this paper we demonstrate how Multilevel
Monte Carlo (MLMC) — a simulation approach which is typically used for stochastic differential equation
models — can be applied in reliability problems by carefully controlling the bias-variance tradeoff in
approximating large system behaviour. In this first exposition of MLMC methods in reliability problems we
address the canonical problem of estimating the expectation of a functional of system lifetime for non-repairable
and repairable components, demonstrating the computational advantages compared to classical Monte Carlo
methods. The difference in computational complexity can be orders of magnitude for very large or complicated
system structures, or where the desired precision is lower.

1. Introduction

It can prove to be computationally intractable to perform classical
reliability analysis of very large engineered systems when the number
of cut (path) sets grows combinatorially. It is well understood that
working instead with subsets of the cut (path) sets or bounding
structural designs can provide probability bounds in many reliability
problems [4], but such bounds can be crude or may not be well
characterised at all.

Evaluation of the reliability of engineered systems is a crucial part
of system design and often scenario planning may involve repeated
evaluation of the reliability for changing system configurations or
component types meaning rapid simulation is highly desirable. For
simplicity of exposition we herein consider the canonical problem of
estimating the expectation of a functional of system lifetime both with
and without a component repair process, showing the approach
developed is easily generalised to other reliability problems which
depend on cut (path) sets for the analysis.

In the case of static reliability analysis, there are many methods
aside from Monte Carlo simulation using the cut (path) sets, including
Sum of Disjoint Products (SDP) methods [22,30,27] and methods
based on Binary Decision Diagrams (BDD) [25] or multistate BDD
extensions [29]. On the other hand, these approaches are less prevalent
in dynamic reliability problems where there are component dependen-
cies, for example through system shocks, repair or maintenance
programmes, and cascading failures among others. There have been
recent developments in dynamic fault trees [20,26,21] which apply

where event sequence ordering influences the reliability, including
repairable systems [19]. When there are arbitrary dependencies, the
most generally applicable approach is direct Monte Carlo simulation
(e.g. [7]), so that acceleration of Monte Carlo techniques is important
to address a broad range of the most complex reliability scenarios.
Monte Carlo acceleration through importance sampling [15], or the use
of control variates [28] have been suggested in the context of reliability
estimation, but they are either restricted to the static case and require
regular updates and sorting of all the cut sets (as for [15]), or could be
combined with the MLMC paradigm (as for [28]).

Indeed, also note that interest may not be in the reliability at a
particular fixed mission time, but instead in: some expectation of a
functional of system lifetime; or in ascertaining a quantile of system
lifetime (i.e. the time to which one is 99.9% certain the system will
survive); or in estimation of the entire system lifetime distribution. In
these situations Monte Carlo methods are typically the only tractable
approach.

Multilevel Monte Carlo (MLMC) methods — pioneered by
Heinrich [14] and Giles [10] — are now standard for estimation of
expectations of functionals of processes defined by stochastic differ-
ential equations (SDEs). However, the MLMC approach is in fact a
general paradigm for accelerating any Monte Carlo based method
(whether standard, importance sampling, etc), if one can link the
accuracy of the estimator with the complexity of generating a sample,
while at the same time controlling the variance of the difference for
approximations with different accuracy. The main contribution in this
paper is development of a Multilevel Monte Carlo (MLMC) approach to
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reliability problems. In this way, we show how any reliability problem
using Monte Carlo simulation over cut (path) sets can be substantially
accelerated, extending the size of systems and complexity of depen-
dencies which are within reach for reliability evaluation.

In Section 2, we recap the traditional cut set method of simulating
system lifetimes which does not scale well to large systems even when
the cut sets are known. This motivates the approach taken in this work.
In Section 3 we recap standard Monte Carlo theory and set out the
error and computational cost metrics which will enable comparison
with our MLMC based approach. The fundamental MLMC methodol-
ogy and our adaptation to the reliability setting then follow in Section
4, before numerical results demonstrating the kind of substantial
computational improvements which can be achieved are covered in
Section 5,6.

2. Simulating system lifetimes

Consider a coherent system with n components. Let x t x t( ), …, ( )n1
denote the operational status (1= working, 0= failed) of the compo-
nents at time t and consider the random variable for the lifetime of
component c to be T F t∼ ( )c c , where F (·)c are positively supported
lifetime distributions which are not necessarily independent or iden-
tical. We will depict a system as an undirected network comprising a set
of nodes (vertices) S, and a set of edges E, where nodes are considered
unreliable and edges are perfectly reliable (note that any setting with
imperfect edge reliability can be easily transformed to a corresponding
representation where they are perfectly reliable [2]).

The system is considered to be functional as long as there is a path
from left to right which passes only though functioning nodes, see
Fig. 1. This is usually represented mathematically by the structure
function, ϕ: {0, 1} → {0, 1}n , which maps component status to system
status.

Herein, our focus is on an equivalent means of evaluation based on
cut sets. A set of components, C, is said to be a cut set of the system if
the system is failed whenever all the components in C are failed. A cut
set is said to be a minimal cut set if no subset of it is also a cut set.
Then, the set of all minimal cut sets, , characterises the operational
state of a system completely and is equivalent to knowledge of the
structure function [6]. In addition to the cut sets characterising the
operational state of the system given the binary operational state of the
components, they also immediately provide the system failure time if
the individual component failure times are known [5]:

T f T T T= ( , …, ) ≔ min max{ } .S S n
c

c1
C∈ ∈C

⎧⎨⎩
⎫⎬⎭

Thus, the failure time for the system depends on the system structure
and the failure time distributions for each node.

The traditional approach to estimating the expectation of a func-
tional of the lifetime of a system given the lifetime distributions of the
components is to perform a simple Monte Carlo simulation. That is,
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The overall runtime for this approach depends on three quantities:

1. Variance of the estimator. Due to the random nature of component
failure times, the estimator is a random variable: higher variance
estimators will require more iterations to achieve an accurate
estimate;

2. Target accuracy of the estimate. Naturally, the higher the desired
accuracy, the longer the algorithm will take due to more iterations
being required;

3. Number of cut sets. As the system size grows, the number of cut sets
has a combinatorial growth, making the approach impractical for
very large systems.

Less brute force approaches are possible with the restrictive
assumption of iid components by making use of the system signa-
ture [18,23]. More recent work on the survival signature [8] has
generalised the signature to multiple types of component, with the
weaker assumption of exchangeability between components. However,
if a large number of the components are of different types or there are
highly dependent failures, then the survival signature will also grow
exponentially in complexity. It can also accommodate a repair pro-
cess [9] through expression as a new component type, though this
increases the complexity if too many repairs occur. Hence, in this work,
we first address the most general possible setting in which any form of
component lifetime and dependence structure is allowed, requiring
only knowledge of component lifetimes and the cut sets of the system.
However, note that it should be possible to specialise this approach to
work with the survival signature which we hope to address in future
research.

3. Monte Carlo algorithms

To simplify presentation, hereinafter we only consider estimating
expected failure time directly, rather than some functional of the failure
time, though this is mostly without loss of generality (see Section 4 for
details). Therefore, assume that for a given system S, we want to
estimate the expected failure time.

 T f T T= ( , …, ).S S n1

There are many approaches to simulation which may differ in terms
of convergence to the true value as well as computational character-
istics. In order to compare them, we present some useful cost and error
expressions in the following subsection.

3.1. Performance measures: error and cost definitions

We start by defining the two main quantities, which will be used
throughout this paper to compare methodologies. Given an estimator TS
of the quantity TS, the Mean Squared Error (MSE) of any Monte Carlo
based method is:

 [( ) ]T Terror = − .S S
2

The classical decomposition of the MSE yields:

       

 

[( ) ] [( ) ] [( ) ]
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T T T T T T T T
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where  T T( − )S S
2
is the squared bias error, while  T T[( − ) ]S S

2
is the

error due to Monte Carlo variance. The first is a systematic error arising
from the fact that we might not sample our random variable exactly,
but rather use a suitable approximation, while the second error comes
from the randomised nature of any Monte Carlo algorithm. For
example, in traditional Monte Carlo applications, one samples exactlyFig. 1. A sample network with a minimal cut set.
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