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A B S T R A C T

System and survival signatures are important and popular tools for studying and analysing the reliability of
systems. However, it is difficult to compute these signatures for systems with complex reliability structure
functions and large numbers of components. This paper presents a new algorithm that is able to compute exact
signatures for systems that are far more complex than is feasible using existing approaches. This is based on the
use of reduced order binary decision diagrams (ROBDDs), multidimensional arrays and the dynamic
programming paradigm. Results comparing the computational efficiency of deriving signatures for some
example systems (including complex benchmark systems from the literature) using the new algorithm and a
comparison enumerative algorithm are presented and demonstrate a significant reduction in computation time
and improvement in scalability with increasing system complexity.

1. Introduction

The system signature, introduced by Samaniego [1], is a useful tool
for studying the reliability of coherent systems [2]. Consider a coherent
system of m components with independent identically distributed
failure times. Let T >0s be the random failure time of the system and
let Tj:m be the lth order statistic for the random component failure times
with T T T≤ ≤…≤:m :m m:m1 2 . The system signature is defined as the vector q
where the value at index l m∈ {1,2,…, }, denoted ql, gives the prob-
ability that the system failure time coincides with the lth component
failure

q P T T= ( = )l s l m: (1)

The system signature has various theoretical applications in
reliability engineering such as establishing stochastic comparisons
between the reliability of different systems [3,4]. An overview of the
system signature and some of its applications in reliability engineering
is given by Samaniego [2], whilst Eryilmaz [5] gives a review of recent
advances. Recently, Coolen and Coolen-Maturi [6] introduced the
survival signature which, similar to the system signature, fulfils the
role of a quantitative model of the system reliability structure that is
entirely separated from the random failure times of the components.
The survival signature has the advantage that is can be easily general-
ised to systems with multiple types of components unlike the system
signature for which this is practically impossible [6]. This general-
isation represents a significant practical advantage since many systems
contain multiple component types, including networks which contain

at least two types of component (‘nodes’ and ‘links’). Let
x x x x= ( , ,…, )∈{0,1}m

m
1 2 represent a Boolean state vector for a system

of m components with exchangeable failure times, where x =1i if
component i functions and x =0i if it is failed. Also let
ϕ : {0,1} →{0,1}m represent the system reliability structure function,
defined for all 2m possible x, where ϕ x( )=1 if the system functions with
component states x and ϕ x( )=0 if it is failed. Finally, let Sl denote the
set of component state vectors with exactlyl of the m components
functioning (i.e. x l∑ =i

m
i=1 ). The survival signature is then defined as the

vector Φ where the value at index l m∈ {0,1,2,…, }, denoted Φl, gives
the probability that the system functions given that precisely/compo-
nents function

⎛
⎝⎜

⎞
⎠⎟ ∑m

l ϕ xΦ = ( )l
x S

−1

∈ l (2)

Now consider the case where the m components in the system are
partitioned into K different types, where the Mk components of type
k K∈ {1,…, } have exchangeable random failure times. Let Sl l, …, K1
denote the set of component state vectors that contain precisely
l M∈{0,1,…, }k k functioning components of type k (i.e. those for which

x l∑ =i
M

i
k

k=1
k for k K= 0,1,…, − 1 where xi

k is the ith component of type

k). Also let
⎛
⎝⎜

⎞
⎠⎟S

M
l= ∏l l k

K k

k
, …, =1K1 denote the cardinality of Sl l, …, K1 and

ϕ xΦ = ∑ ( )l l x S, …, ϵK l lK1 0, …, −1
denote the number of state vectors from

Sl l, …, K1 for which the system functions. The generalised survival
signature, Φ, is then defined as the multidimensional array with K
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dimensions where the value at index l M l M( ∈{0, .., },…, ∈{0, .., })K K1 1 in
dimensions K(1,…, ) respectively, denoted Φl l, …, K1 , gives the probability
that the system functions given that precisely l l( ,…, )K1 components of
types K(1,…, ) respectively function

S
Φ =

Φ
l l

l l

l l
, …,

, …,

, …,
K

K

K
1

1

1 (3)

LetC Mϵ{0,…, }t
k

k denote the number of components of type k in the
system that function at time t > 0. The probability that the system
functions at time t can be calculated using the survival signature and
the joint probability distribution for the number of functioning
components of each type at time t
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If failure times of components of type k are conditionally indepen-
dent and identically distributed with CDF F t( )k and failure times of
components of different types are independent, then
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For systems containing a single component type, the system
signature and survival signature have the simple relation

q = Φ −Φl m l m l− − −1 (6)

Several theoretical applications of the survival signature to pro-
blems in the field of reliability engineering have already been published
including nonparametric predictive inference for system reliability [7];
Bayesian inference for reliability of systems and networks [8]; model-
ling uncertain aspects of system dependability [9]; predictive inference
for system reliability after common-cause component failures [10];
imprecise system reliability and component importance [11]; Bayesian

nonparametric system reliability using sets of priors [12] and compar-
ing systems with heterogeneous components [13].

Despite the advances is the theory and development of numerous
application for signatures, practical applications have until now been
limited to the analysis of relatively small problems. The main reason for
this is that the computation of signatures using existing methods is
difficult unless the number of components is small or the system
reliability structure function is quite trivial [2,6]. The aim of this paper
is to present a new and computationally efficient algorithm based on
binary decision diagrams for computing exact system and survival
signatures and report its computational efficiency for a number of
example systems, including large and complex systems that have been
derived from practice and were published as benchmarks in the
literature. The remainder of this paper is organised as follows:
Section 2 describes the existing methods that are available for the
computation of system and survival signatures. Section 3 introduces
the new algorithm. Section 4 presents some results on the efficiency of
the new algorithm in computing system and survival signatures for a
set of example systems, including some large and complex benchmark
systems from the literature. Section 5 summarises the paper, gives
some concluding remarks and also discusses limitations and areas for
future work.

2. Existing methods for system and survival signature
computation

A small number of methods for computing system signatures have
been published in the literature and are based on minimal ordered cut
sets, diagonal sections of the reliability structure function and gen-
erating functions. Kochar et al. [14] note that the system signature can
be defined for j m∈ {1,2,…, } as

q numberofcomponentorderingsforwhichthejthfailurecausessystemfailure
m

=
!j

(7)

Nomenclature

m Number of components in the system
K Number of component types in the system, where com-

ponents of the same type have exchangeable random
failure times

Mk Number of components of type k
xi Boolean variable representing the state of component i

where x =1i if the component functions and x =0i if the
component is failed

x Vector of length m representing the system component
states where the value at index i m∈ {1,…, } corresponds
to xi

ϕ Boolean function representing the system reliability struc-
ture where ϕ x( )=1 if the system functions with component
state vector x and ϕ x( )=0 if the system is failed

fx v=i Boolean function f evaluated with Boolean variable x v=i
Ts Random failure time of the system
Tl:m lth order statistic for the random component failure times
ql Probability that the system failure time coincides with the

lth component failure (i.e. P T T( = ))s l:m
q Vector of length m known as the system signature where

the value at index l m∈ {1,…, } corresponds to qj
Sl l, …, K1 Set of state vectors for the m components that contain

precisely lk functioning components of type k
Sl l, …, K1 Cardinality of Sl l, …, K1
S Multidimensional array with K dimensions where the

value at index l l( ,…, )K1 in dimensions K(1,…, ) respec-
tively corresponds to Sl l, …, K1

S Multidimensional array with K dimensions where the
value at index l l( ,…, )K1 in dimensions K(1,…, ) respec-
tively corresponds to Sl l, …, K1

Φl l, …, K1 Number of state vectors for the m components that both
contain precisely lk functioning components of type k and
result in the system functioning

Φ Multidimensional array with K dimensions where the
value at index l l( ,…, )K1 in dimensions K(1,…, ) respec-
tively corresponds to Φl l, …, K1

Φl l, …, K1 Probability that the system functions given that exactly
l l( ,…, )K1 components of types K(1,…, ) respectively func-
tion

Φ Multidimensional array with K dimensions known as the
survival signature where the value at index l l( ,…, )K1 in
dimensions K(1,…, ) respectively corresponds to Φl l, …, K1

Ct
k Number of components of type k in the system that

function at time t > 0
Fk Cumulative distribution function for the time to failure of

components of type k
A‡ The complement of multidimensional array A
A B⊕ Elementwise addition of multidimensional arrays A and B
A B⊖ Elementwise subtraction of multidimensional array A

from multidimensional array B
A B⊘ Elementwise division of multidimensional array A from

multidimensional array B
A k⊞ Resize-k operation on multidimensional array A
A k⊛ Shift-k operation on multidimensional array A
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