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A B S T R A C T

The paper considers non-repairable 1-out-of-N heterogeneous warm standby computing systems with
components exposed to internal failures and external shocks. To provide the data recovery in the case of
operating component failure, the backup procedures are performed during the computational mission. The
backups enable an activated standby component to take over the mission task from the point where the last
backup has been completed without redoing the entire task from scratch. Both data backup and retrieval times
depend on the amount of work performed. The system components are characterized by a different performance
level, replacement time, time-to-internal failure distribution, and shocks survival probability. The shock
processes also have different characteristics for different components. A numerical method is proposed to
evaluate mission success probability for a given allowed mission time and expected mission completion time.
The optimal backup scheduling problem is then formulated and solved for different optimization objectives and
constraints.

1. Introduction

To enhance the system reliability, the standby sparing technique is
widely applied in various application areas such as high performance
computing [1], flight control [2], space missions [3], and power
systems [4,5]. In a standby system part of components is in operation
whereas other components serve as standby spares. When an operating
component fails, a standby component is activated to take over the
system task. Before being put into operation, standby components can
exhibit different failure characteristics [6]: they can be unpowered,
completely shielded from the working stresses, and thus have a zero
constant failure function (cold standby); alternatively they can work in
synchrony with the online components, being fully exposed to the
working stresses, and thus having the same failure rate as online
components (hot standby). A general model (warm standby) assumes
that the standby components can be exposed to certain stresses, and
their failure function be dominated by their corresponding full opera-
tional failure function [7,8]. The cold and hot standby can be
considered as special cases of the general warm standby model.

To avoid redoing the mission task from scratch in the case of
operating component failure, the backup technique is used in comput-
ing systems [9–11]. Each operating component usually performs a

number of data backup procedures during its mission based on a
predetermined schedule. These backup procedures are associated with
additional mission time. The data backup time incurred in each backup
action typically depends on the amount of work conducted since the
last backup or since the beginning of the mission. When an operating
component fails, a replacement procedure is initiated to activate a
selected standby component, and to transfer the previously-saved data
from the backup storage to the selected component. The activation can
include powering and/or connecting, testing, warming up or synchro-
nizing the standby element. The time of the activation/replacement
procedure also contribute to the entire mission time. In addition, each
activated standby component takes additional time for re-performing
the part of task that was already done by the last active element since
the previous successful backup.

To achieve the balance between the time needed for performing the
backups and time needed to re-perform the part of the mission task by
standby components in the case of failures, the optimal number of
backups and backup schedule should be found. In [11] this task has
been considered for 1-out-of-N heterogeneous warm standby systems
with internal failures characterized by arbitrary time-to-failure dis-
tributions. However, besides internal failures, system components are
usually exposed to external shocks as well. In order to achieve the
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adequate probabilistic description, the influence of shocks on the
performance of systems should be taken into account and combined
in a suitable way with inherent (internal) reliability characteristics.
When systems are operating in a changing environment, neglecting this
influence can lead to errors and misconceptions while analyzing their
reliability characteristics. Therefore, in the current paper, we study the
joint effect of internal failures and shocks on the performance of warm
standby systems with backups. This joint effect in such type of systems
has never been studied in literature.

Shock models are widely used in different reliability applications
(see [12–16] among others). Traditionally, one distinguishes between
two major types of shock models: cumulative shock models (systems
fail because of some cumulative effect) and extreme shock models
(systems fail due to one single shock). Some generalizations of
traditional models have been considered in the literature (see, e.g.,
references [15–22]).

Most of the shock models in reliability have been developed under
the assumption of the Poisson process of shocks (see, e.g., [15–17] and
references therein). Poisson shock models are usually mathematically
tractable and allow for rather compact expressions for the probabilities
of interest. It is worth mentioning that shock models governed by the
renewal processes, which have a simple probabilistic nature, are
already more cumbersome and approximations and numerical meth-
ods should be used for dealing even with the simplest settings [18].

The influence of shocks on backup scheduling was not considered in
the literature so far. Furthermore, the important and distinct from
conventional shock models feature of our model is that the probability
of a component's failure under a shock depends on the previously
experienced shocks, which, makes it more realistic in practice. For
considered practical examples, we show how the shock rates and
components' susceptibility to shocks affect the optimal backup sche-
dule and suggest a tool for determining the most effective investment
into the shock protection enhancement.

We assume that the considered two types of failure modes are

independent, which is a reasonable assumption in practice especially
for electronic systems that are characterized by ‘sudden failures’ as
opposed to gradual failures, e.g., in mechanical or electro-mechanical
systems. In the latter case, shocks usually influence degradation
processes in the system and the assumption of independence is no
longer valid.

The remainder of the paper is arranged as follows. Section 2
presents the system model. Section 3 derives the component shock
survival probability for NHPP shock process. Section 4 describes the
numerical algorithm for MSP and EMCT evaluation and briefly
describes the optimization approach. Section 5 presents numerical
examples and analysis results. Section 6 concludes the work.

2. The model

The system consists of N non-identical components. The compo-
nents are exposed to both internal failures and random external shocks
that constitute two failure modes for each component. Component j is
characterized by a specific time-to-internal failure distribution with
cumulative distribution function (cdf) Fj(t), shock survival probability
function that determines the shocks survival probability Θ t( )j and
performance (number of operations executed in a time unit) Gj. The
computational complexity of the mission (total number of operations to
be performed) is M. If no failures or backup procedures happen, then
component j needs time M/Gj to complete the entire mission task. At
any given time, only one component is in operation whereas the
remaining components are in the warm standby (WS) mode.

In many practical systems the functionally equivalent standby
components, such as onboard processors, are separated to enhance
the system survivability and reduce the influence of common cause
destructive factors. In addition, modern computing systems are often
specially distributed by their nature. Consider for example local net-
works consisting of computers with different characteristics that can
perform the same computational task. Depending on location, ambient

Nomenclature

N number of system components
H number of backup procedures throughout the mission
M total number of operations to be performed during the

mission (excluding backups)
R MSP
D EMCT
b(x), u(x) number of operations needed to save, retrieve data

generated after performing fraction x of the entire mis-
sion task

Bh, δh number of operations, work portions needed for h-th
backup procedure

Uh, μh number of operations, work portions needed to retrieve
the data stored in h-th backup procedure

m number of work portions needed to accomplish the
mission when no failures occur

τ minimal recognized time interval
Δ number of operations in each discrete portion of work
Tmax, Ymax maximum allowed mission time, number of time inter-

vals in the mission
Ymin minimum possible number of time intervals in the mis-

sion
π backup distribution vector π=(π1,…,πH), where πj is

fraction of the entire mission task that should be per-
formed between (j-1)-th and j-th backup procedures

γh number of work portions that should be completed
between the (h-1)-th and h-th backup actions γh=πhM/Δ

αh number of work portions that should be performed

between the mission beginning and the end of the h-th
backup procedure

φ(i) integer number for which α i α≤ <ϕ i ϕ i( ) ( )+1
s(i) index of the component, which should be initiated, given

it is still working, after components with indices s(1),…
s(i-1) have failed

Qj(h,Y) probability that the number of the last backup that was
completed by the sequence of components s(1), s(2), …,
s(j) is h and the number of the time interval when the last
component from this sequence failed is Y

Gj, gj performance (number of operations, work portions per
time unit) of j-th component

λj replacement time of warm standby component j
dj life-time deceleration factor for component j
Fj(t) baseline time-to-internal-failure cdf for component j
rj

WS, rj
OM shock rates for component j in standby and operation

modes
Ωj initial shock resilience probability of component j
ωj susceptibility to shocks factor for component j
P t t( , )j

int
0 probability that component j that should be activated at

time t0 does not fail because of internal causes during time
t

P t t( , )j
sh

0 probability that component j that should be activated at
time t0 survives shocks during time t

Θ t( )j shocks survival probability of component j
Φ t t( , )j 0 overall probability that component j that should be

activated at time t0 fails before time t
[x] integer number closest to x
Ψ(t) discretization function: Ψ(t)=[t/τ]
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