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A B S T R A C T

Global Sensitivity Analysis (GSA) can help modelers to better understand the model and manage the
uncertainty. However, when the model itself is rather sophisticated, especially when dependence exists among
model inputs, it could be difficult or even unfeasible to perform quantitative GSA directly. In this paper, a non-
parametric approach is proposed for screening model inputs. It extends the classic Elementary Effects (i.e.,
Morris) method, which is widely used for screening independent inputs, to enable the screening of dependent
model inputs. The performance of the proposed method is tested with three numerical experiments, and the
results are cross-compared with those from the variance-based GSA.

It is found that the proposed method can properly identify the influential and non-influential inputs from a
complex model with several independent and dependent inputs. Furthermore, compared with the variance-
based GSA, the proposed screening method only needs a few model runs, while the screening accuracy is well
maintained. Therefore, it can be regarded as a practical tool for the initial GSA of high dimensional and
computationally expensive models with dependent inputs.

1. Introduction

Along with the continuous development of computational techni-
ques, and the increasing power of computers, simulation models are
more and more advanced and powerful nowadays, and they have
become one essential resource for scientific research and practical
applications. However, the complexity of simulation models has also
significantly increased, especially due to the fact that they now often
include a large number of parameters. To aid modelers to better
understand the model, and to manage the uncertainties in model
computation, it is necessary to further investigate the relationship
between model inputs and output(s), especially when the model is
extremely sophisticated and/or treated like a black box. One commonly
used tool for such task is Global Sensitivity Analysis (GSA) [1].

The sensitivity information can be obtained through performing
GSA in the input space, and analyzing the impacts of variations of
inputs on the variations of output(s). Such information can be
qualitative (e.g., the sets of influential and non-influential inputs) or
quantitative (e.g., the variance contributions of model inputs to the
total variance of model output(s)). They can be used for e.g., identifying
the key inputs, reducing the uncertainties of model response, setting
priorities for model calibration. Due to its importance, several GSA
approaches have been extensively developed in the past few decades. In

general, these approaches can be classified according to the sensitivity
indexes to be assessed: derivative-based sensitivity measure [2–5],
regression-based sensitivity measure [6,7], qualitative (or screening)
sensitivity measure [8–12], variance-based sensitivity measure
[13–17], and moment independent sensitivity measure [18–20].
More information regarding the different GSA approaches can be
found in [1,21].

All these sensitivity measures, however, are based on the indepen-
dence assumption of the model inputs. In practice, due to certain
constrains in the input space, and/or the intricate relations among the
inputs obtained from empirical experiments (e.g., some inputs are the
outcome of another model or experiment) [22], it is very likely that the
model inputs are actually dependent inputs, or mixtures of both
independent and dependent inputs. In these cases, simply assuming
that all model inputs are independent, and directly applying the
aforementioned GSA methods can be fallacious, and consequently
can lead to incorrect inferences (see e.g., the numerical experiments
in Section 4).

To the authors' knowledge, only a few recent studies that are able to
perform GSA of models with dependent inputs can be found in the
literature. For example, studies such as [23–27] discussed the variance
decomposition with parametric or non-parametric methods for models
with dependent inputs, while [28–30] extended the analytical formula-
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tions and the corresponding numerical estimators to compute the
extended Sobol' sensitivity indexes [13] for dependent inputs. All these
methods are quantitative, i.e., they quantitatively decompose and
analyze the variance contributions of dependent model inputs. Yet,
for complex models in practice, the application of quantitative GSA
might still be difficult or unfeasible when the model itself contains
many inputs (i.e., high dimensional) and/or is computationally ex-
pensive.

Therefore, in this paper we recall the application of inputs screening
before performing any quantitative GSA (see [21] for more details).
The main goal is to identify the least influential inputs, so that they can
be fixed at their nominal values without significantly influencing the
model output. This approach is also known as the Factor Fixing (FF)
setting [31,1]. It is found in [21,32,33] that for high dimensional and
computationally expensive models with independent inputs, the inputs
screening can reduce the complexity of the model, and hence enhance
the efficiency of the quantitative GSA without losing accuracy.
Therefore, it is expected that a proper screening method may also
provide such benefits for models with dependent inputs.

The objective of this paper is thus to develop an efficient, non-
parametric approach for screening dependent model inputs. The
performance of the proposed screening method is evaluated through
numerical experiments. The screening results from each experiment
are cross-compared with the reference results obtained using the
variance-based GSA [29,30]. This analysis shows that the proposed
screening approach can efficiently identify the non-influential inputs
with satisfactory accuracy at a low computational cost.

The paper is organized as follows. A brief review of the screening
method, specifically, the Elementary Effects (EE) method and its recent
extensions, as well as the variance decomposition for dependent inputs
is given in Section 2. The methodology for the proposed screening
method is presented in Section 3. The details about the numerical
experiments, and the corresponding results are introduced and dis-
cussed in Section 4. Conclusions are given in Section 5.

2. Literature review

2.1. Elementary effects method

The Elementary Effects (EE) method, which is also known as the
Morris method, was first introduced by Morris in [8]. Let f be a model
with k independent inputs, i.e., X X XX = { , , …, }k1 2 , which are defined in
the k-dimensional input space Ω Ω( ⊂ )k k k . Let Y be the model output,
i.e., Y f X= ( ). Moreover, let x x xx = { , ,…, }k1 2 be the values assigned to X
in Ωk, i.e., Ωx ∈ k. If only xi (i.e., the value of input Xi, i k∈ [1, ]) is varied
by a given value Δ, while the values of all other inputs remain unchanged,
the corresponding model output is f x x x Δ x x( , …, , + , , …, )i i i k1 −1 +1 ,
with x x x Δ x x Ω{ , …, , + , , …, } ∈i i i k

k
1 −1 +1 . The formula for computing

the EE of Xi (i.e., EEi) is given below:

EE f x x x Δ x x f
Δ

x= ( ,…, , + , ,…, ) − ( ).i
i i i k1 −1 +1

(1)

The above definition employs the One-At-a-Time (OAT) design. To
investigate the global sensitivity of Xi, the OAT experiment is repeated
using N different values of x that are randomly sampled in Ωk .
Accordingly, N EEs can be obtained for input Xi. In [8], the mean
(i.e., μi) and the standard deviation (i.e., σi) of these N EEs are used as
the screening measures:
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where EEi r, corresponds to the r-th EE of Xi.

In [9], the absolute mean (i.e., μ*
i ) is proposed to replace μi:

∑μ
N

EE* = 1 | |,i
r

N

i r
=1

,
(4)

where |·| stands for the absolute value. As discussed in [9], when the
model contains many interactive inputs and/or the model is not
monotonic, using μ*

i as a screening measure can significantly reduce
the Type II error (i.e., considering an influential input as non-
influential [1]). According to [8,9], an input Xi is identified as:

a) a non-influential input, if μ*
i is close to zero;

b) an influential input with negligible non-linear effects, if μ*
i is high

but σi is low; or
c) an influential input with non-linear effects and/or strong interac-

tions with other inputs, if both μ*
i and σi are high.

It was found in [2,3] that for non-monotonic models, the EE
method is less accurate than the Monte Carlo/Quasi-Monte Carlo
integration method in estimating the derivative-based sensitivity
measures [2,4]. However, the same studies [2,3] also emphasized that
such high accuracy of estimates may not be required for inputs
screening, where the aim is to identify influential and non-influential
inputs with a low computational cost. Thus, the EE method can still be
considered as a good compromise between accuracy and efficiency,
especially for the SA of high dimensional and computationally ex-
pensive models.

It is worth mentioning that although the EE method was developed
for screening purposes [8], this approach can also be used for ranking
the inputs in order of importance [34,35,3]. In particular, Saltelli et al.
[35] recommended to use μ* for inputs ranking when the SA is FF
setting. Moreover, the empirical study in [9] showed that using μ* for
ranking independent model inputs could achieve similar results as
using the Sobol' total sensitivity index (see Section 2.2.1). Due to its
high efficiency, the EE method has been successfully employed for
ranking independent inputs by many researchers from different dis-
ciplines (e.g., [9,36–38,33,39,40]).

To enhance its computational efficiency, the classic Morris EE
method has been extended by adopting different sampling designs, for
example, the trajectory design1 [8,9,37,11], the cell design [10], and
the radial design [42]. The trajectory design is the most commonly used
sampling design for computing EE, while the radial design shows the
best performance (see the experiments performed in [42] for more
details). These two designs are therefore implemented in the screening
approach proposed in this paper, and will be introduced in Section
3.2.1.

When the model contains dependent inputs, the classic EE meth-
od's biggest drawback is that it does not account for the impacts from
inputs dependence. For example, when an input is changed by Δ, any
other correlated input should simultaneously show some variation.
However, such variation is are not included in Eq. (1). Hence, when
dependence exists among model inputs, the application of the classic
EE method could yield incorrect screening results. To take the effects of
inputs dependence into account, it is necessary to recall the variance
decomposition approach from the variance-based GSA. The corre-
sponding information is presented in the following section.

2.2. Variance decomposition and sensitivity indexes

2.2.1. Model with independent inputs
We consider a square integrable function f with k independent

inputs X X XX = { , ,…, }k1 2 defined in k . According to [13], f can be

1 The trajectory design is also known as winding stairs in [41]. The difference is the
trajectory design always produces random trajectories separately, while the winding
stairs design joins all random trajectories together.
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