
Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Bootstrap analysis of designed experiments for reliability improvement with
a non-constant scale parameter

Guodong Wanga,⁎, Zhen Heb, Li Xuea, Qingan Cuic, Shanshan Lvb, Panpan Zhoub

a Department of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, China
b College of Management and Economics, Tianjin University, Tianjin 300072, China
c School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China

A R T I C L E I N F O

Keywords:
Design of experiments
Censored data
Percentile
Weibull distribution

A B S T R A C T

Factors which significantly affect product reliability are of great interest to reliability practitioners. This paper
proposes a bootstrap-based methodology for identifying significant factors when both location and scale
parameters of the smallest extreme value distribution vary over experimental factors. An industrial thermostat
experiment is presented, analyzed, and discussed as an illustrative example. The analysis results show that 1)
the misspecification of a constant scale parameter may lead to misidentify spurious effects; 2) the important
factors identified by different bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile
bootstrapping, and bias-corrected and accelerated percentile bootstrapping) are different; 3) the number of
factors affecting 10th percentile lifetime significantly is less than the number of important factors identified at
63.21th percentile.

1. Introduction

1.1. Background

With markets increasingly competitive, leading practitioners have
to find efficient and economical methods for improving product
reliability [1]. Many factors may affect product reliability.
Practitioners need to identify important factors and choose levels of
these factors that lead to improved reliability. Design of experiments
(DOE) has received a great deal of attention as a quality improvement
tool [2–4]. However, statistical techniques of DOE cannot be directly
applied to lifetime data analysis, because the distribution of lifetime
data is usually non-normal. The usual F-tests from analysis of variance
are not valid. Generalized linear models (GLM) can deal with non-
normal distribution [5]. However, Weibull distribution which is often
used in reliability analysis does not belong to the exponential family.
Additionally, the lifetime data may be censored. When censoring exists,
DOE that based on least square method cannot be used to improve
product reliability [6].

Maximum likelihood method, easily accounts for censored data and
non-normal data, is generally recommended for calculating parameter
estimates for lifetime models [7–9]. Some statistical software packages
are available for analysis of lifetime data, such as SAS, R, MINITAB,
and JMP. To test the significance of the estimates, they need to be

compared with their standard errors. For example, in SAS software
[10], the LIFEREG procedure estimates the parameters by maximum
likelihood with a Newton-Raphson algorithm. The standard errors of
the parameter estimates are computed from large sample normal
approximations by using the observed information matrix. If conver-
gence of the maximum likelihood estimates (MLEs) is attained, the
Chi-square test statistic is computed for each effect, testing whether
there is any contribution from any of the levels of the effect. Condra
[11], Hamada [12], and Wu and Hamada [4] gave several examples to
illustrate how to improve product reliability using design of experi-
ments. Rigdon et al. [13] discussed a number of examples and
presented results using these statistical software packages.

1.2. Motivating example

The aforementioned methods can deal with problems by assuming
scale parameter is a constant. In fact, sometimes, the scale parameters
under different treatment combinations are different. Lawless [7]
suggested using likelihood ratio tests to decide whether the scale
parameter is constant.

Bullington et al. [14] used a Plackett-Burman design for improving
reliability of an industrial thermostat and analyzed lifetime data using
LIFEREG procedure in SAS software. The results showed that all
factors are significant at the 0.0025 level. They pointed out that
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“scarcity of effects” principle is the case in most screening experiments,
but a number of the effects included in this study had already been
demonstrated to have an effect. We test the null hypothesis that the
scale parameter is constant. The result shows that the null hypothesis is
rejected with a very small p-value.

1.3. Literature review

Examining the literature, we find few publications that use DOE
method to improve product reliability considering the scale parameter
is non-constant. Besseris [15] analyzed lifetime data from designed
experiments using a rank sum test method. Mee and Lu [16] noted that
there is a fundamental flaw to using rank sum tests for analyzing
factorial designs. That is, rank sum statistics for the factorial effects are
not independently distributed. Piña-Monarrez and Ortiz-Yañez [17]
analyzed lifetime data from Taguchi experiments using multiple linear
regression. However, the proposed method cannot be used to identify
important factors which affect 100pth percentile significantly.

In accelerated life tests (ALTs), the scale parameter may be non-
constant, which is widely studied in the literature [18–24]. All of these
works assume that the scale parameter is a function of stress factors.
The coefficients of the models can be estimated by maximum likelihood
method. The variance estimates of coefficients can be obtained by
computing the inverse of Fisher information matrix. However, this
procedure is not available for computing the asymptotic variance-
covariance matrix when we assume the scale parameter is non-
constant, because the number of factors in DOE is much larger than
the number of stress factors in ALT. Furthermore, the aforementioned
literature on ALTs assume that the scale parameter and the location
parameter are functions of stress factors, respectively. Thus, we cannot
decide which factors affect the product lifetime significantly even if we
have known which factors are important for scale parameter and which
factors are important for location parameter of location-scale models.

In design of experiments for quality improvement, interest is
focused on the mean or average response. In reliability improvement
experiments, the focus is often on percentile lifetime. These low
percentiles provide engineers with an evaluation of the product's early

failures as well as information of specification limits, warranty, and
cost analysis. Additionally, for smallest extreme value distribution,
mean is a special case of percentiles, i.e., 42.96th percentile; location
parameter is also a special case of percentiles, i.e., 63.21th percentile.

In order to identify the important factors that affect percentiles of a
product, we must test the significance of the estimates which needs to
be compared with standard errors. It is difficult to assess significance
via DOE when the data is censored, because it is very hard to obtain the
degrees of freedom. Maximum likelihood method can deal with
censored data, but it assumes that the ratio follows normal distribu-
tion. Bootstrapping is a direct method to identify important experi-
mental factors. It does not have to consider the distribution of
estimator and does not need to calculate the degrees of freedom.
Efron and Tibshirani [25] pointed out that bootstrapping in statistics is
a computer-intensive resampling method used to estimate properties of
a statistic that are difficult to calculate analytically. DiCiccio and Efron
[26] presented several types of bootstrap confidence intervals including
standard, percentile, and bootstrap-t. Edwards et al. [27] compared
two wood plastic composite extruders using bootstrapping confidence
interval of percentiles. Wang et al. [28] analyzed lifetime data with
subsampling via two-stage bootstrapping. Kenett et al. [29] proposed
the application of the bootstrapping for the analysis of designed
experiments as an alternative to a standard regression approach.
Kenett et al. treated the right-censored times as actual failure times
and used bootstrap method in the analysis of screening design.
Ignoring the censoring information, however, can lead to wrong
decisions because the unobserved failure times and right-censored
times may differ greatly, depending on the particular factor level
combination. A simulation study in Hamada and Wu [30] showed that
this method can perform poorly by missing some important factors and
misidentifying spurious factors. Efron [31] presented bias-corrected
percentile method to reduce the median-bias of bootstrap distribution.
In order to improve the coverage properties of the percentile con-
fidence intervals, Efron [32] suggested achieving the normality of
bootstrap distribution by some transformation. Chou et al. [33]
computed process incapability index Cpp by using bootstrap confidence
intervals.

Nomenclature

Acronyms

ALTs Accelerated Life Tests
BCa Bias-corrected and Accelerated Percentile Bootstrapping
BCIs Bootstrapping Confidence Intervals
BCPB Bias-corrected Percentile Bootstrapping
CDF Cumulative Distribution Function
DOE Design of Experiments
GLM Generalized Linear Models
MLEs Maximum Likelihood Estimates
MTTF Mean Time to Failure
PB Percentile Bootstrapping
SEV Smallest Extreme Value

Notation

m number of treatment combinations
n number of items within each treatment combination
K repeat times of resampling
X matrix of treatment combinations
Cpp process incapability index
tij failure time of jth item in the ith treatment combination
yij tlog( )ij

yip 100pth percentile of log lifetime in the ith treatment
combination

a vector of parameters of model with yij
b vector of parameters of model with yip

b̂ the estimate of b obtained from original samples
b̂* the estimate of b obtained from resampling
P0 b bPr[ ˆ* ≤ ˆ]
PL the probability of lower quantile
PU the probability of upper quantile
zα the lower α th quantile of standard normal distribution
z0 Φ P( )−1

0
εij the measurement errors of tlog( )ij

μi the location parameter of SEV distribution in the ith
treatment combination

σi the scale parameter of SEV distribution in the ith treat-
ment combination

zij z y μ σ= ( − )/ij ij i i
F (⋅) CDF of log(lifetime)
Φsev the standard SEV distribution
δij censoring indicator of jth item in the ith treatment

combination
(⋅) likelihood function

ℓ(⋅) log-likelihood function
Σ̂ the estimate of covariance matrix
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