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A B S T R A C T

This paper develops a condition-based maintenance (CBM) policy for systems subject to aging and cumulative
damage. The cumulative damage is modeled by a continuous degradation process. Different from previous
studies which assume that the system fails when the degradation level exceeds a specific threshold, this paper
argues that the degradation itself does not directly lead to system failure, but increases the failure risk of the
system. Proportional hazards model (PHM) is employed to characterize the joint effect of aging and cumulative
damage. CBM models are developed for two cases: one assumes that the distribution parameters of the
degradation process are known in advance, while the other assumes that the parameters are unknown and need
to be estimated during system operation. In the first case, an optimal maintenance policy is obtained by
minimizing the long-run cost rate. For the case with unknown parameters, periodic inspection is adopted to
monitor the degradation level of the system and update the distribution parameters. A case study of Asphalt
Plug Joint in UK bridge system is employed to illustrate the maintenance policy.

1. Introduction

With the development of sensor technologies, system condition can
be monitored at a much lower expense, which prompts the application
of condition-based maintenance (CBM). CBM takes advantage of the
online monitoring information to make maintenance decisions. For a
system subject to CBM, based on the collected condition information,
maintenance actions are carried out only when “necessary” [18,19].
Compared with the traditional time-based maintenance, CBM has
shown its priority in preventing unexpected failure and reducing
economic losses [29,34].

CBM is conducted based on the observation that systems usually
suffer a degradation process before failure, and the degradation process
can be observed by degradation indicators such as temperature, voltage
and vibration. In literature, many researchers used multi-state dete-
riorating models to describe the degradation process and formulated
the maintenance strategy as a Markov or semi-Markov decision process
[21,26]. Although Markov model is widely used in degradation model-
ing, one disadvantage is that the classification of system state is very
arbitrary [14,15,4].

Recently, more emphasis is paid to continuous degradation pro-
cesses. In the framework of continuous degradation, the degradation

process is usually described by a general path model or a stochastic-
process-based model such as Wiener process, Gamma process and
inverse Gaussian process [17,32,33]. Caballé et al. [3] proposed a CBM
for systems with continuous degradation and external shocks. Peng and
van Houtum [23] developed a joint CBM and lot sizing policy for
systems subject to continuous degradation.

An implicit assumption of the previous research is that a system
fails when its degradation level exceeds a pre-specified failure thresh-
old. However, in reality, the failure threshold is difficult to determine
and usually it is a random variable depending on the environment
condition and the product's characteristics. In this paper, the cumula-
tive damage is modeled as a continuous degradation process. We argue
that degradation process does not necessarily lead to system failure,
but increases the likelihood of failure. Both internal aging and
cumulative damage contribute to system failure. Examples of the joint
effect of aging and cumulative damage on system failure can be found
in systems such as high-voltage power transformers and bridge systems
[22,28,31]. For a new transformer, its insulation strength can with-
stand severe events such as transient overvoltage and lightning strikes.
When a transformer ages, its internal condition degrades, which makes
it more vulnerable to fluctuating environment condition and increases
the risk of failure. For a bridge system, failures are usually triggered by
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external events such as hurricane, flood and overload. If a bridge
system undergoes severe deterioration, it may hit the point where tiny
external influences can lead to system failure. The degradation itself
does not directly lead to system failure, but it increases the probability
of failure when exposed to external events.

A convenient and prevalent way to integrate the aging and
degradation effect into system failure is by a proportional hazards
model (PHM) [16]. PHM incorporates a baseline hazard function
which accounts for the aging effect with a link function that takes the
inspection information into account to improve the prediction of failure
[24]. Applications of PHM can be found in various fields such as
finance, manufacturing system and energy generators [11].

In literature, several studies have been conducted on maintenance
policy in the PHM framework. Banjevic et al. [1] developed a control-
limit maintenance policy for systems subject to periodic inspection.
Ghasemi et al. [8] proposed a CBM policy for systems with imperfect
information, where the condition the system cannot be directly
monitored. Wu and Ryan [30] investigated the value of condition
monitoring in the PHM setting, where a continuous-time Markov chain
was used to describe the system condition. Wu and Ryan [31] further
extended the model by considering Semi-Markov covariate process and
continuous monitoring. Tian and Liao [27] proposed a CBM policy for
multi-component systems using PHM. Lam and Banjevic [12] inves-
tigated the issue of inspection scheduling for CBM. In all of these
previous studies, the degradation process is characterized via Markov
or semi-Markov model. In addition, the distribution parameters in the
PHM are assumed as known in advance.

This paper aims to develop CBM policies for systems subject to
aging and cumulative damage. The system is subject to aging and
extremely frequent cumulative damage (e.g., traffic load to a bridge),
where the extremely frequent cumulative damage is approached by a
continuous degradation process. PHM is used to model the joint effect
of aging and cumulative in the framework of failure rate. The effect of
cumulative damage is modeled as the stochastic covariate in the PHM
framework. The system is subject to periodic inspection, which is
assumed to be perfect. At inspection, maintenance actions are carried
out based on the observed condition information. Optimal mainte-
nance policies are obtained by minimizing the long-run cost rate.
Specifically, two CBM models are developed by assuming respectively
known distribution parameters and unknown distribution parameters.
In the case where the distribution parameters are unknown, the
parameters have to be estimated and updated at each inspection, and
maintenance decisions are made subsequently.

This paper differs from the existing works in that: (a) It incorpo-
rates the influence of both aging and cumulative damage in modeling
the failure rate. (b) It argues that degradation itself does not directly
result in system failure, but increases the risk of failure. (c) It utilizes
the observed condition information to update distribution parameters
for making appropriate maintenance decisions.

The remainder of this paper is organized as follows. Section 2
presents the degradation-integrated failure model, where PHM is used
to describe the impact of aging and cumulative damage. Section 3
formulates two maintenance models. One assumes known distribution
parameters while the other assumes unknown distribution parameters.
Application of the maintenance models to Asphalt Plug Joints in UK
bridge system is presented in Section 4. Finally, concluding remarks
and future research suggestions are given in Section 5.

2. Degradation-integrated failure model

This paper considers a single-unit system subject to aging and
cumulative damage. The cumulative damage is modeled as a contin-
uous degradation process. For systems such as bridges, which are
subject to traffic load hours by hours, a continuous degradation process
is reasonable to characterize the cumulative damage over time. In this
paper, we use “cumulative damage” and “degradation process” inter-

changeably. In the present paper, the degradation process derives from
cumulative shocks, which is an external factor. Besides the external
factor, the system also suffers from internal aging factors. That is to
say, the aging and the degradation are two processes. Therefore, we
model the system subject to both aging and degradation process.
Different from previous studies which assume that soft failure occurs
when the degradation level hits a pre-specified threshold, we here
consider sudden failure, which depends on both the aging and
cumulative damage. For most infrastructure systems, failures usually
happen due to external shocks or serious events, and degradation
makes it more vulnerable when exposed to shocks. As previously
described, the degradation process itself does not directly lead to
system failure, but it increases the failure rate of the system. PHM is
used to characterize the influences of degradation level on system
failure rate. The degradation level of the system is represented as the
value of covariate in the PHM framework [13]. Based on PHM, the
failure rate at time t is given by

h t X h t φ X( ; ) = ( ) ( )t t0 (1)

where h t( )0 is the baseline failure rate at time t, which is a non-
decreasing function of t. Xt is the degradation level at time t, and φ(∙) is
a positive function projecting the degradation level to the failure rate
function. Let X X t= { , ≥ 0}t be a continuous stochastic process that
depicts the degradation process. Various stochastic processes can be
used to describe the degradation process, among which a wide used
candidate is the general path model [20]. Assume that
X g t θ α ε t= ( ; , , ( ))t , where g(∙) is a parametric function that charac-
terizes the evolution of the degradation process, θ is a random variable
that accounts for unit-to-unit variability, α is a random parameter that
captures the initial degradation level among the components’ popula-
tion, ε t( ) is an independent and identically distributed (iid) random
error term [6]. The selection of g(∙) depends on system characteristics
and can take a variety of forms such as linear, exponential or
logarithmic. In this paper, for simplicity, we assume that g(∙) is a
linear function. The degradation process can be denoted as
X α θt ε t= + + ( )t [7,9], where the error term ε t( ) follows a Gaussian
distribution with mean zero and variance σ2, α and θ follow Gaussian
distributions, with mean μ μ σ′ = − /20 0

2 and variance σ0
2, and mean μ1

and variance σ1
2. Since ε t( ) is independent of time t, we may suppress

the notation of t and denote ε t( ) as ε. In Eq. (1), the baseline failure rate
function, h t( )0 , accounts for the aging effect, which can be explained as
the normal failure rate when no cumulative damage is imposed. The
influence of cumulative damage is incorporated in the degradation level
Xt . Obviously Xt follows a Gaussian distribution,
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It is assumed that μ μ t σ σ σ t σ+ − /2 ≫ + +0 1
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probability of Xt being negative can be neglected and Xt stochastically
increases with t almost surely. Given the degradation process x, the
conditional reliability can be obtained as
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where T is the time to failure and xs is the realization of Xs at time s. The
probability density function (pdf) is given as
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The expected lifetime of the system can be obtained as

∫ ∫E T E E T t f t x f x dx dt[ ] = [ [ ]] = ∙ ( | ) ( )X s T T s X s s| ,0< <
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∞
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where fXs
is the pdf of degradation level by time s. If the projecting

function φ(∙) is exponential, h t X h t βX( ; ) = ( )exp( )t t0 , where β is the

B. Liu et al. Reliability Engineering and System Safety xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/5019424

Download Persian Version:

https://daneshyari.com/article/5019424

Daneshyari.com

https://daneshyari.com/en/article/5019424
https://daneshyari.com/article/5019424
https://daneshyari.com

