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a b s t r a c t

We investigate the achievable efficiency of both the time and the space discretisation methods used in
Antares for mixed parabolic–hyperbolic problems. We show that the fifth order variant of WENO com-
bined with a second order Runge–Kutta scheme is not only more accurate than standard first and second
order schemes, but also more efficient taking the computation time into account. Then, we calculate the
error decay rates of WENO with several explicit Runge–Kutta schemes for advective and diffusive prob-
lemswith smooth and non-smooth initial conditions.With this data, we estimate the computational costs
of three-dimensional simulations of stellar surface convection and show that SSPRK(3,2) is the most ef-
ficient scheme considered in this comparison.

© 2014 Elsevier B.V. All rights reserved.

The simulation code Antares [1] was developed for the simu-
lation of solar and stellar surface convection. Recently it has also
been applied to many other astrophysical problems (e.g. [2,3]).

In this code, the Navier–Stokes equations usually without mag-
netic field and with radiative transfer (radiation hydrodynamics,
RHD) are solved in the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (1a)

∂ (ρu)

∂t
+ ∇ · (ρu ⊗ u) + ∇p = ρg + ∇ · τ , (1b)

∂E
∂t

+ ∇ · (u (E + p)) = ρ (g · u) + ∇ · (u · τ) + Qrad. (1c)

The meaning and units of all variables are shown in Table 1.
An equation of state must be specified to complete this set of
equations. The viscous stress tensor τ =


τi,j

i=1,2,3 is given by

τi,j = η


∂ui

∂xj
+

∂uj

∂xi
−

2
3
δi,j (∇ · u)


+ ζ δi,j (∇ · u) . (2)

g is the gravity vector and Qrad is the radiative heating rate de-
scribing the energy exchange between gas and radiation. δi,j is the
Kronecker symbol. η and ζ are the first and second coefficients of
viscosity.
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We can rewrite Eq. (1) as

∂Q
∂t

+ ∇ · Fadv = ∇ · Fvisc + S (3a)

with

Q =


ρ
ρu
E


, Fadv =


ρu

ρu ⊗ u + p Id
u (E + p)


,

Fvisc =

 0
τ

u · τ


, S =

 0
ρg

ρ (g · u) + Qrad


.

(3b)

Q is the vector containing the conserved quantities and Id is the
identity matrix. We call the terms collected in Fadv the advective or
inertial part and in Fvisc the viscous part of the Navier–Stokes equa-
tions. All first derivatives are contained in ∇ · Fadv, all second order
terms in ∇ · Fvisc. We note that ∂Q

∂t + ∇ · Fadv = 0 is of hyperbolic
type, whereas ∂Q

∂t − ∇ · Fvisc = 0 is a parabolic system.

1. Discretisation and numerical methods

Following the method of lines approach of discretising space
and time separately [4,5], Eq. (7) are discretised in space only and
converted to

∂Q
∂t

= L (Q) , (4)
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Table 1
Variable names, meaning and CGS units as used in this paper. Note that x denotes
the vertical direction. Vectors are written in bold face. The velocity vector is u =

(u, v, w)T .

Variable Meaning Unit (CGS)

ρ gas density g cm−3

T temperature K
p pressure dyn cm−2

u x velocity (vertical) cm s−1

v y velocity (horizontal) cm s−1

w z velocity (horizontal) cm s−1

Qrad radiative heating rate erg s−1 cm−3

vsnd sound speed cm s−1

E total energy erg cm−3

e internal energy erg cm−3

ϵ specific internal energy erg g−1

η dynamic viscosity g cm−1 s−1

ζ second (bulk) viscosity g cm−1 s−1

where L is the operator resulting from the spatial discretisation
of −∇ · Fadv + ∇ · Fvisc + S. In principle, the integration of
this equation can be performed with any numerical method for
solving ordinary differential equations, in particular Runge–Kutta
methods, provided they are numerically stable, although further
properties (such as positivity, e.g., of T or E) may be required (cf.,
for instance, Kupka et al. [6]).

The spatial discretisation is done separately for Fadv and Fvisc as
defined in Eqs. (3). In optically thin regions the radiative heating
rate Qrad is a source term and is calculated separately by the
radiative transfer solver as described in Muthsam et al. [1]. In
optically thick regions, the diffusion approximation
Qrad = ∇ · (κ∇T ) (5)
is valid such that we can include Qrad in the Fvisc term.

For Fadv, the WENO finite difference scheme is employed [7–9].
The WENO scheme is a highly efficient shock-capturing scheme
which we consider here in its fifth order variant called WENO5. In
the context of solar surface convection simulations, its superiority
in terms of accuracy compared to other high-order schemes was
shown in Muthsam et al. [10]. Its main part, the fifth order accu-
rate reconstruction operator, is summarised in Algorithm 3.

For Fvisc, the fourth-order accurate scheme from Happenhofer
et al. [11] is used. First, we outline the procedure for the one-
dimensional diffusion equation

∂φ

∂t
− D

∂2φ

∂x2
=

∂φ

∂t
−

∂

∂x


D

∂φ

∂x


= 0 (6)

with the constant coefficient of diffusion D. In one spatial dimen-
sion and on an equidistant Cartesian grid, the outer derivative is
approximated by

∂

∂x


∂φ

∂x


(xi) =

∂φ

∂x


xi+ 1

2


−

∂φ

∂x


xi− 1

2


δx

(7a)

with constant grid spacing δx. Then, the inner derivative is calcu-
lated by
∂φ

∂x


xi− 1

2


=

φi−2 − 15φi−1 + 15φi − φi+1

12 δx
, (7b)

leading to a fourth-order accurate approximation. Here, φi =

φ (xi).
Similar procedures can be applied to any second-order term, in

particular to Fvisc. Special care has to be taken formixedderivatives.
In the two-dimensional case and considering only the Fvisc terms,
we arrive at
∂

∂t
(ρu) =

∂

∂x


ζ +

4
3
η


∂u
∂x

+


ζ −

2
3
η


∂v

∂y


+

∂

∂y


η


∂u
∂x

+
∂v

∂y


(8)

by virtue of Eqs. (1) and (2). The outer derivatives are replaced by
a finite difference, evaluating the inner function at the half-integer
nodes. Therefore, we need the terms inside the spatial derivatives
in (8) at (i− 1

2 , j) and at (i, j− 1
2 ).

∂u
∂x at (i− 1

2 , j) and
∂v
∂y at (i, j− 1

2 )

can be calculated directly by formula (7b). Then, the coefficient
functions must be interpolated to the half-integer grid. To fourth-
order accuracy,

ηi− 1
2 ,j =

−ηi−2,j + 7ηi−1,j + 7ηi,j − ηi+1,j

12
, (9)

assuming that the variable is given as a cell average. To calculate
∂v
∂y at the half integer index


i − 1

2 , j

, we calculate the derivative

at the cell centre by

∂v

∂y
|i,j =

vi,j−2 − 8vi,j−1 + 8vi,j+1 − vi,j+2

12 δy
, (10)

and then interpolate the result to

i − 1

2 , j


according to for-
mula Eq. (9). The computation of ∂u

∂x at

i, j − 1

2


is done analo-

gously. The resulting procedure is fourth-order accurate.
After the spatial discretisation step, the Eq. (1) are transformed

to the form Eq. (4). Since Eq. (4) is an ordinary differential equation,
we can use Runge–Kutta schemes to integrate it.

We follow Gottlieb et al. [12] in defining some basic properties
of Runge–Kutta schemes.

Definition 1. Let an initial value problem of the form

φ′(t) = L (φ(t)) , φ(0) = φ0, (11)

be given. An explicit s-stage Runge–Kutta scheme is an integration
scheme of the form

φ(0)
= φn,

φ(i)
=

i−1
k=0


αi,k φ(k)

+ δt βi,k L(φ(k))

,

αi,k ≥ 0, i = 1, . . . , s,

φn+1
= φ(s),

(12)

where φn
= φ(tn) and the time step δt is given by the CFL

condition.

Definition 2. Assume that L results from the discretisation of a
spatial operator and let a seminorm ∥ · ∥ be given. FollowingWang
and Spiteri [13], a Runge–Kutta method of the form (12) is called
strong stability preserving (SSP) if for all stages i, i = 1, 2, . . . , s,

∥φ(i)
∥ ≤ ∥φn

∥ (13)

with a CFL restriction on the time step δt .

The total variation diminishing (TVD) property [7] is a special
case of this definition. It results from inserting the total variation
norm of φ at time tn,

TV(φn) =


j

|φn
j+1 − φn

j |, (14)

in (13).
In this paper, we consider four explicit time integration

schemes: the first-order Euler forward method, the second-order
two-stage TVD2 and the third-order three-stage TVD3 scheme
from Shu and Osher [7]. The fourth explicit scheme is the second-
order three-stage scheme from Kraaijevanger [14], further studied
in Ketcheson et al. [15] and Kupka et al. [6], called SSPRK(3,2).

The TVD2 and TVD3 (total variation diminishing) schemeswere
also analysed with respect to their SSP (strong stability preserv-
ing) properties by Kraaijevanger [14]. Their coefficients were first
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