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a b s t r a c t

Full waveform inversion (FWI) is a model-based data-fitting technique that has been widely used to
estimate model parameters in Geophysics. In this work, we propose an efficient computational approach
to solve the FWI of crosswell seismic data. The FWI problem is mathematically formulated as a partial
differential equation (PDE)-constrained optimization problem, which is numerically solved using a
gradient-based optimization method. The efficiency and accuracy of FWI are mainly determined by the
threemain components: forwardmodeling, gradient calculation andmodel updatewhichusually involves
the gradient-based optimization algorithm. Given the large number of iterations needed by FWI, an
accurate gradient is critical for the success of FWI, as it will not only speed up the convergence but
also increase the accuracy of the solution. However computing the gradient still remains a challenging
task even after the adjoint PDE has been derived. Automatic differentiation (AD) tools have been proved
very effective in a variety of application areas including Geoscience. In this work we investigated the
feasibility of integrating TAPENADE, a powerful AD tool into FWI, so that the FWI workflow is simplified
to allow us to focus on the forward modeling and the model updating. In this paper we choose the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method due to its robustness and fast
convergence. Numerical experiments have been conducted to demonstrate the effectiveness, efficiency
and robustness of the new computational approach for FWI.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fullwaveform inversion (FWI) is amodel-based nonlinear data-
fitting procedure taking the seismicwaveform data to estimate the
model parameters, which usually appear as coefficients (e.g. wave
velocity) in the seismic wave equation. The most popular method
of FWI is composed of three main steps: forward modeling, which
solves the seismic wave equation based on an initial guess of the
model parameters; calculating the gradient of the objective func-
tion which measures the difference between the synthetic seis-
mogram and the observational field data and updating the model
parameters with an optimization method [1–6]. Apparently, the
efficiency and accuracy of the FWI are determined by the three
time-consuming steps. Among the three steps, the forward mod-
eling has been extensively discussed in the literature, and a vari-
ety of accurate and efficientmethods have been developed to solve
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the seismic wave equation. Except for efficiency and accuracy, an-
other difficulty in forward modeling is wave reflection on the do-
main boundary,which is usually treatedbyperfectlymatched layer
(PML) or other type of absorbing boundary condition (ABC). As
mentioned early, the gradient calculation is a rather challenging
task, despite extensive efforts that have been devoted into this
area. It is widely accepted that the adjoint state method is an ef-
ficient and cost-effective solution to this problem. Another im-
portant component of the proposed computational method is a
gradient-based optimizationmethod,which also affects the overall
efficiency and accuracy of the inverse problem.

Many seismic FWI techniques utilize the gradient related
optimization algorithms to update the model parameters, hence
the gradient calculations are unavoidable, especially if the model
parameters are in large size. The adjoint state method has been
introduced in the theory of inverse problems in the 1970s [7],
however it has a pretty long history dating back to Lagrange’swork,
in which he presented the famous Lagrange identity to define the
adjoint operator. Recently, many developments in the adjoint state
method have been made to compute the gradient of the objective
function in FWI [1,8] and other areas [9,10], to name a few.
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Generally speaking, there are two equivalent ways to imple-
ment the discrete adjoint state method: adjoint-then-discretize
and discretize-then-adjoint. Extensive comparisons and introduc-
tions of continuous and discrete adjoints can be found in [11–17]
and references therein. In the first case, one derives the adjoint
partial differential equation (PDE) of the seismicwave equation us-
ing perturbation theory or Lagrange multiplier method, then nu-
merically solve the adjoint PDE.While in the second approach, one
first derives the numerical algorithm to solve the forward problem,
then derives the so called discrete adjoint based on the numeri-
cal scheme. The two approaches are equivalent in the sense that
they produce the same gradient in machine precision, if the same
numerical scheme is used to solve the forward and adjoint PDEs.
More information regarding the approximation of adjoint gradi-
ents on other applications can be found in [18–21]. When the for-
ward model is linear, the adjoint PDE is generally in a simple form
and similar to the forward model, hence numerical solution of the
adjoint PDE is not very difficult. However in the general case, it is
well known that the procedure of numerical solution for the ad-
joint PDE is error-prone due to hand coding, and time consuming.
Moreover, given that PML or other types of ABC is involved in for-
ward modeling, derivation and implementation of adjoint PDE be-
comesmore difficult. Alternatively, this programmingwork can be
substituted by the automatic differentiation technique that calcu-
lates the gradient with the adjoint method.

To overcome this difficulty, automatic differentiation (AD) has
been introduced for the purpose of gradient calculation. AD is the
technique that has been used to generate a computer code based
on the forward modeling computer code. Simply speaking, it is a
source to source code translator implementing discrete adjoint.
Given a computer program evaluating the function f (x), the output
of AD is a new computer program evaluating f ′(x). AD has been
widely used in many areas such as optimization, meteorology,
oceanography and Geoscience applications [22–30], however it is
still not very popular for seismic inversion problem. Fortunately,
AD has attracted increasing attention from Geoscientists and has
been introduced into the full waveform inversion domain in the
recent years. Tan [31] has shown that AD is an efficient approach
to verify the accuracy of the gradient and Hessian operations
generated by the adjoint state method. Liao [32] has successfully
estimated the acoustic coefficient in a simple 2D acoustic wave
equation using the AD tool TAMC. We believe that with the
increasing popularity of adjoint state method and the increase of
computing power, it should be a good practice to make full use of
AD tool to solve the gradient of the objective function in the FWI
workflow. In fact, there are a variety of AD tools that can be used to
generate the adjoint code for the purpose of gradient calculation,
although they vary in all aspects such as efficiency, easiness for use,
etc.

Another important components in FWI is the optimization
procedure. There are many optimizationmethods that can be used
to update the model parameters in the FWI workflow. The method
of solving using the Hessian vectors is referred to as the Newton
method, which in general is computationally costly. In fact, the full
Hessian based pure Newton method is currently not being used in
realistic FWI because of the high computational cost [6]. The simple
and attractive choice is to substitute the inverse of the Hessian
with some simplified approximation. Such modification results
in the so-called gradient method or steepest-descent method,
which are widely used in solving the gradient-based optimization
problem. The mostly used optimization methods include the
conjugate-gradient (CG) method, the Quasi-Newton method and
Gauss–Newton method in the literature.

In particular, we use TAPENADE [33], one of the most powerful
AD tools to compute the gradient of the objective function in
the full waveform inversion, in which the objective function is

Fig. 1. Velocitymodel between two vertical wells and acquisition system. The stars
represent the sources located at the left side well, the dots represent the receivers
placed at the right side well.

defined as the difference in 2-norm between the observational
data and synthetic seismogram. The optimization problem is
then solved by the limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS)method. The proposed computational framework
is tested on a 2D acoustic wave equation with crosswell seismic
datasets. The rest of the paper is organized as follows. In
Section 2, the FWI problem ismathematically formulated as a PDE-
constrained optimization problem, which is followed by Section 3
in which a brief review of the mathematical foundation of the
adjoint statemethod and a short introduction to the AD toolwill be
presented. In Section 4 we describe the optimization algorithm for
solving the optimization problem, followed by several numerical
test cases in Section 5. Finally, the conclusions and possible future
extensions are discussed in Section 6.

2. Mathematical formulation of FWI

In this sectionwe formulate the FWIproblemas anoptimization
problem constrained by the 2-D crosswell seismic model in a
heterogeneous medium given by

1
ν2

∂2u
∂t2

=
∂2u
∂x2

+
∂2u
∂z2

+ f (x, z, t), (x, z, t) ∈ Ω × [0, tf ], (1)

where ν = ν(x, z) is the wave velocity, Ω is a 100 m × 100 m
square domain shown in Fig. 1, tf is the end of time domain,
f (x, z, t) represents the seismic source generated at thewell on the
left side,while the receivers are located at thewell on the right side.
To simplify the description of the numerical procedure, in what
follows we ignore the source term, which will be added later.

As shown in Fig. 2, there are three main components in the
inverse problem: Forward modeling, gradient calculation and
model updating. Starting from an initial guess of thewave velocity,
the forward problem is solved to calculate the seismogram, which
is then comparedwith the observational data to calculate themisfit
function. Based on the forward problem and the misfit function,
the gradient with respect to the model parameters is calculated.
Using some gradient-based optimization algorithm, the model is
updated, and the procedure moves to the next loop till a good
match between the calculated seismogram and observational data
is reached. Inwhat followswe describe these components in detail.
We first focus on the numerical solution of the seismic wave
equation and calculation of the objective function. Many efficient
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