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a b s t r a c t 

A pragmatic approach to prior elicitation was developed to elicit the parameters and model structure for Bayesian 

generalised linear models. Predictive elicitation of subjective probability distributions was used to evaluate Risk 

Control Option (RCO) effectiveness for reducing the risk of ship collisions in Australia ’s Territorial Sea and Ex- 

clusive Economic Zone. The RCOs considered were pilotage, Vessel Traffic Services (VTS) and Ships ’ Routeing 

Systems (SRS). Predictive relationships with key covariates were documented. Distance from the Territorial Sea 

Baseline was important for all RCOs, and aggregate measures of shipping traffic patterns such as volume and the 

distribution of course over ground headings were related to the effectiveness of both VTS and SRS. A synergistic 

interaction between pilotage and VTS effectiveness was predicted. The elicitation method enabled a practical 

approach to eliciting subjective probability distributions while accounting for the complexity and myriad factors 

that contribute to challenging problems. The approach supports coherent updating given new information, and 

so can be used to support evidence based decision making. 

© 2017 Commonwealth Scientific and Industrial Research Organisation. Published by Elsevier Ltd. 
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1. Introduction 

Safety analysis is concerned with making decisions while uncertain 
about the relationship between possible actions and outcomes. Bayesian 
decision theory provides a coherent approach to decision making under 
uncertainty [1] . Subjective probability is the language used to capture 
uncertainty [2] and accommodates both aleatory and epistemic uncer- 
tainty [3] . If empirical data are available, then new information can co- 
herently be incorporated via statistical models, that is, Bayesian learning 
can occur. This process ideally begins by documenting the available ex- 
pert knowledge and uncertainty. The elicitation of expert opinion using 
subjective probability distributions rather than eliciting scores or point 
estimates (such as a mean) is a desirable goal when assessing quantita- 
tive risk [4] , and substantial effort has been devoted to the elicitation 
of subjective probability distributions (as opposed to point estimates) of 
unknown parameters over the years [5,6] . 

The contribution of subjective probability distributions by experts 
forms a foundation for evidence based decision making. Some exam- 
ples of application domains are shipping safety [7] , reliability growth 
assessment for the development of modular software or hardware sys- 
tems [8] , public policy [9] , estimating costs and risks for space systems 
[10,11] , nuclear plant safety [12] , hydrogeology and water treatment 
[13] . Well-suited domain experts often have busy schedules that are de- 
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manding of their valuable expertise and skill set. Yet complex problems 
often have many risk factors to consider. A successful elicitation method 
that allows for Bayesian updating of unknown parameters must permit 
non-statisticians to contribute their judgements and also mitigate the 
required elicitation workload to a manageable level. 

For example, the assessment of risk for shipping requires the con- 
sideration of multiple risk factors such as ship characteristics, vessel 
traffic patterns, physical factors and the effectiveness of any deployed 
Risk Control Options designed to reduce risk [14] . A popular method for 
eliciting expert opinion in the risk analysis of shipping safety is Bayesian 
networks [15,16] . The expert subjective probability assessments are 
usually restricted to point estimates, which likely give an incomplete 
summary of the underlying uncertainty for a given scenario. Many elic- 
itation targets for shipping risk would be more naturally represented by 
continuous distributions, which may be approximated within a discre- 
tised Bayesian network with increasingly fine partitions, but at the cost 
of complicating the Bayesian network structure and hence elicitation 
load [17] . Moreover, assessing uncertain model structure for Bayesian 
networks is time-consuming and difficult [18] , and rarely completed. 
Nevertheless, despite the typical simplifications of point estimates and 
an assumed known model structure, the increasing use of Bayesian net- 
works has led to recognition of the pressing need to manage the elicita- 
tion workload for shipping risk applications [16] . One alternative is to 
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develop a prior for unknown coefficients in a regression function that 
relates risk factors to the exposure of interest. For shipping risk, one 
approach is suggested by Merrick and van Dorp [19] , where point es- 
timates of the relative likelihoods of collision were elicited for various 
scenarios that form the design points in a regression function. 

The uncertainty that experts have under a given scenario may be 
relevant and so eliciting subjective probability distributions may be pre- 
ferred to point estimates [4] . Eliciting expert subjective probability dis- 
tributions has a recognised and important role in the risk analysis of 
shipping safety [7] . On the other hand, directly eliciting subjective prob- 
ability distributions for regression coefficients is a difficult task com- 
pared to observable quantities [6,20] . A multivariate normal prior is 
a typical choice for linear and generalised linear models [21] , but tar- 
geting a multivariate normal prior would necessitate the elicitation of 
means, variances and covariances. Eliciting these statistical moments is 
a difficult task for experts [1,6] even without the added complication of 
introducing known covariates into a regression model. 

The assessment of linear model parameters by eliciting from experts 
their subjective probability distributions of predicted responses, as op- 
posed to point estimates or directly targeting the regression parameters, 
began with the normal linear model proposed by Kadane et al. [22] . 
This approach requires the expert to consider responses conditional not 
only on covariates but also realisations of the response at different de- 
sign points. A similar approach extends to logistic regression [23] and 
other generalised linear models [24] . This latter approach allows for 
piecewise linear models but assumes independence among parameters 
that correspond to different covariates. 

Another predictive approach was elaborated for generalised linear 
models using conditional mean priors [25] . The expert in this case con- 
tributes a distribution, perhaps based on elicited moments or modes, 
conditional on the values of the covariates at a design point. The form 

of the prior may depend on the chosen link function and likelihood. 
However, as mentioned above, a typical choice of prior is multivariate 
normal independent of the choice of likelihood and link function (e.g., 
[24,26] ). Such multivariate normal priors for generalised linear models 
are the focus of this paper. 

A technique is proposed that elicits subjective probability distribu- 
tions conditional on scenarios or design points. The proposed approach 
is a conditional mean prior technique, but differs from [25] in that ex- 
perts are always asked to provide fractiles (equivalently quantiles or 
percentiles) of predictive subjective probability distributions. A more 
important differentiation is the form of the induced prior, which unlike 
[25] is multivariate normal no matter the choice of link and likelihood 
function. The approach allows for dependence among all unknown pa- 
rameters of the linear model including continuous and categorical pre- 
dictors and all possible interactions, in short, any model that can be 
represented as a GLM with a linear combination of basis functions. In 
some cases, the model structure is unknown a priori and must also be 
assessed from the expert elicitation, and the proposed technique is ro- 
bust to this situation. The elicitation can accommodate new sources of 
information, whether from new elicitation or from empirical data, by 
Bayesian updating and so forms a foundation for evidence based deci- 
sion making. An example is given for the assessment of Risk Control 
Options for shipping collision risk in the Territorial Sea and Exclusive 
Economic Zone that surrounds mainland Australia. 

2. Generalised linear model 

The generalised linear model (GLM) has three components [27] . The 
first component specifies an observation model, p ( y i | 𝜃i , 𝜉), for data y i 
conditional on the expected response 𝔼 

[
𝑦 𝑖 
]
= 𝜃𝑖 and any additional pa- 

rameters 𝜉 used by the observation model chosen from the exponential 
family. The second component is the linear predictor, 𝜂i , that is linked to 
the expected value of the response. The linear predictor depends on the 
p × 1 vector x i of the known covariates evaluated at the design point (or 

“scenario ”), and the p × 1 vector of unknown parameters 𝛽, 

𝜂𝑖 = 𝑥 ⊤𝑖 𝛽, (1) 

where the x i may encode continuous covariates, factors, polynomials 
or other choice of basis functions. The third component is an invertible 
link function , 𝑔( 𝜃𝑖 ) = 𝜂𝑖 , that links the expected response to the linear 
predictor. 

In a Bayesian GLM, a normal prior is often chosen for the parame- 
ters 𝛽. A normal prior is the conjugate prior for the normal linear model 
[28] , which is a GLM with a Gaussian observation model and identity 
link function. Although a conjugate prior is sometimes available, this is 
not the case for all choices of Bayesian GLMs. However, the posterior 
distribution will under some regularity conditions be approximated by 
a multivariate normal for large sample sizes [29] . Moreover, a normal 
prior includes commonly applied basis function models and Gaussian 
process models for the linear predictor in GLMs [21,30] . The normal 
prior specification can also ease comparison with other prior structures 
that may be contributed in the form of hierarchical models, where ran- 
dom effects are often modelled through a Gaussian process prior to cap- 
ture spatial or temporal dependence [31] or by a multilevel normal prior 
in the case of exchangeable random effects [21] . A normal prior derived 
from expert opinion is therefore sought for the unknown coefficients 𝛽
in Bayesian GLMs. 

3. Conditional elicitation step 

3.1. Elicitation of subjective conditional probabilities 

The target of the elicitation will be the unknown 𝜃. Typically 𝜃 is 
defined such that it has an direct interpretation relative to potential ob- 
servables and expert knowledge. For example, in a Bernoulli response 
model where the y i correspond to successes and failures, 𝜃𝑖 = 𝔼 

[
𝑦 𝑖 
]

is 
interpreted as a proportion or probability of an event occurring; in a 
Poisson response model where the y i correspond to counts, 𝜃i is inter- 
preted as an intensity that may relate to the rate of an event occurring 
over a given time interval, and so on. 

The expert (or experts if participating in a group elicitation) are 
asked to provide their subjective probability estimates for 𝜃i conditional 
on the design point x i . This is the independent conditional mean prior 
approach where it is useful to assume that expert contributed responses 
are conditionally independent given the covariates [25] . Another ap- 
proach is to ask questions about conditional distributions to elicit depen- 
dence among observations at different design points (e.g., [22] ). This ap- 
proach is intractable for many forms of generalised linear models [25] . 
Moreover, eliciting dependencies requires additional questions, which 
is an important consideration given the already limited time and sta- 
tistical resources available for a given elicitation or relevant domain 
experts ( Section 1 ). Such approaches therefore may prompt experts by 
making typical proposals based on the model structure, which may run 
the risk of anchoring an expert to the proposed value rather than elicit- 
ing their true opinion. The selection of design points for an independent 
conditional mean prior elicitation is an experimental design question 
discussed further in Section 4.2 . 

A method that elicits fractiles is the preferred approach over other 
approaches that ask for moments [5,6] . Experts have difficulty assess- 
ing how sensitive the mean of a distribution is to its tails, whereas the 
probability statements encoded by fractiles are easier to elicit [1] . We 
adopt a normal model for 𝜂i | x i with the conditional mean and variance 
formed into the parameter vector 𝜙𝑖 = [ 𝑚 𝑖 , 𝑣 𝑖 ] ⊤. In the generalised lin- 
ear model framework, the vectorised link function g ( · ) is monotonic 
and preserves fractiles. Therefore, conditional on a design point x i , an 
elicitation of fractiles for the target 𝜃𝑖 = 𝑔 −1 ( 𝜂𝑖 ) directly translates into 
fractiles for the conditional normal distribution of the linear predictor, 
𝑔( 𝜃𝑖 |𝜂𝑖 ) = 𝜂𝑖 |𝑥 𝑖 ∼ 𝑁( 𝑚 𝑖 , 𝑣 𝑖 ) . The parameters 𝜙i are chosen to minimise 
the information lost by approximating the elicited fractiles by a normal 
distribution as follows. 
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