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a b s t r a c t 

Time-variant reliability analysis aims to evaluate the probability that an engineering system successfully performs 

its intended function throughout its service life. The model describing the system behavior should then include 

the time-variant uncertainties. This results in an even more computationally expensive model what makes the 

surrogate modeling a promising tool. While Kriging has been widely investigated in the literature, this work 

explores the Polynomial Chaos Expansion (PCE) in the time-variant reliability field. First, the time interval of 

study is discretized and an instantaneous performance function is associated to each time node. Afterwards, a 

principal component analysis is performed in order to represent all these functions with a reduced number of 

components that are then approximated using PCE. An adaptive algorithm is proposed to automatically enrich 

the experimental design until the target accuracy is reached. Finally, a global surrogate model of the time-variant 

response is obtained on which the Monte–Carlo simulation method can be easily applied. This allows to obtain 

the complete evolution in time of the probability of failure with a unique reliability analysis. Results show that 

the proposed method is suitable for high dimensional time-dependent problems considering non-stationary and 

non-Gaussian processes. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Time-variant reliability analysis is concerned with the calculation 
of the probability that a mechanical system fulfills its intended func- 
tion throughout its lifetime. A realistic analysis needs to take into ac- 
count both the random and temporal character of material properties, 
geometry parameters and loads. The time dependency adds an extra 
complexity to the classical reliability problem by introducing the time 
dimension. However, such an analysis is of vital importance for reduc- 
ing the lifecycle cost [1] , improving the sustainability of the mainte- 
nance [2] and setting a schedule for preventive condition-based main- 
tenance [3] . Research in the field of time-variant reliability analysis 
is still ongoing to develop methods that procure the best compromise 
between efficiency and accuracy. Even though other methods exist for 
time-dependent reliability problems, the most widely used methods can 
be generally grouped into two main categories: the outcrossing methods 
and the extreme-value methods. 

The outcrossing approach estimates the probability of failure 
through the average of the crossing rate during the structure lifetime. An 
outcrossing occurs if the performance function passes from the safe zone 
to the failure zone. Numerous methods have been proposed in the litera- 
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ture [4–6] to calculate the crossing rate using the asymptotic integration 
approach. The most common methods [7,8] are based on the Rice’s for- 
mula [9] that assumes all upcrossings are independent. Their accuracy 
is therefore poor for problems with low reliability levels. Improvements 
have been made by relaxing this assumption using joint upcrossing rates 
[10] and the first order sampling approach [11] . In general, these meth- 
ods are based on the First Order Reliability Method (FORM) which is 
inaccurate for problems with nonlinear limit state functions and mul- 
timodal statistical properties. Based on the works of Hagen and Tvedt 
[12,13] , the widely used PHI2 method was proposed [14,15] using a 
two-component parallel system analysis and FORM. Despite its high ef- 
ficiency, PHI2 provide only an upper bound of the cumulative proba- 
bility of failure and thus may grossly underestimate the true reliability 
level. 

The extreme value approach takes interest in the global extreme re- 
sponse of the mechanical system with respect to time. Failure is thereby 
considered if the value of interest is smaller than a given threshold. 
In this case, time- invariant reliability tools can be used if the distribu- 
tion of the extreme value is accurately obtained. The specific problem 

where the time-dependency is introduced by only one loading stochastic 
process is treated in [16] . In [17] a Nested Extreme Response Surface 
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(NERS) method is proposed. It relies on a double-loop procedure: in the 
first loop, the global extremes of the response are obtained through the 
Efficient Global Optimization (EGO) [18] whereas in the second loop 
the Kriging method is employed to model the time at which the ex- 
treme response occurs. An improvement of the method is proposed in 
[19] where samples from random variables and time are drawn simul- 
taneously. However, EGO-based methods are unaffordable for problems 
where time is involved through stochastic processes. In this case, the 
system response may have several peaks and the computational cost 
becomes important. In [20] , a method allowing to consider multiple in- 
put stochastic processes is proposed. First, the processes are discretized 
using a spectral decomposition. Then, Kriging models are used to ap- 
proximate the limit state function at each discretized time node using 
a confidence-based adaptive sampling technique. The extreme value of 
the response can thus be obtained by evaluating the obtained surro- 
gates. It is worth noting that the discretization of stochastic processes 
considerably increases the dimension of the problem (i.e. the total num- 
ber of input random variables) and consequently reduces the compu- 
tational efficiency of Kriging [21] . To overcome this issue, the SILK 

method was recently proposed in [22,23] . It is based on a one dimen- 
sional classification approach and allows to represent each stochastic 
process with a single variable. However, being based on Kriging, SILK 

may lack efficiency when a large experimental design is needed and 
when the surrogate model needs to be evaluated at a high number of 
new trial points. This requires the inversion of the covariance matrix of 
the Kriging model, whose size may dramatically increase. The compu- 
tational burden is even higher when stochastic processes are involved 
with small autocorrelation lengths. 

The Polynomial Chaos Expansion (PCE) [24] is another popular 
surrogate modeling technique widely used in probabilistic analysis. 
Through this method, a response surface of the mechanical model is 
constructed using multidimensional orthogonal polynomials with re- 
spect to the distributions of the input random variables. Further devel- 
opments have lead to the sparse version that can tackle high dimensional 
problems [25] and PCE has recently shown its efficacy in time- invariant 

structural reliability analysis [26] . However, its application for transient 
problems is still insufficiently explored in the literature [27] . 

This paper presents a new method called t -PCE, for time-variant re- 
liability analysis using polynomial chaos expansion. A procedure is pro- 
posed to replace the complex time-dependent response by an easy-to- 
evaluate polynomial model. First, the time interval of interest is dis- 
cretized into a finite number of time nodes, and an instantaneous per- 
formance function is associated to each node. In principle, each of these 
functions can be approximated with a distinct PCE. However in gen- 
eral, engineering systems are studied over a long time interval, hence 
the number of functions may be very high requiring an important num- 
ber of expansions. To tackle this issue, a Principal Component Analysis 
(PCA) is performed to represent all the instantaneous functions with a 
reduced number of non-physical components. Afterwards, each compo- 
nent is approximated using a polynomial chaos surrogate before com- 
bining them in a global surrogate model. An adaptive algorithm is also 
proposed and allows to iteratively enrich the experimental design until 
the polynomial surrogates meet the required accuracy. The time-variant 
reliability analysis can be finally assessed easily using simulation-based 
methods, such as Monte–Carlo Simulation (MCS). 

The t -PCE method is proposed for the general time-variant relia- 
bility problem where the model response is function of input random 

variables, stochastic processes and the time parameter. The efficiency 
of t -PCE is investigated for high dimensional problems involving non- 
stationary and non-Gaussian stochastic processes. Moreover, t -PCE pro- 
vides at no extra computational cost, the evolution in time of the cu- 
mulative probability of failure over the structure lifetime. The rest of 
this paper is organized as follows. Section 2 recalls the basics of time- 
variant reliability analysis. In Section 3 , first a background concept on 
polynomial chaos expansion is provided then the proposed method is 
presented. Two case studies of a cantilever tube structure and a two- 

dimensional truss structure are used to demonstrate the effectiveness of 
the proposed methodology in Section 4 . Finally a concluding summary 
is given in Section 5 . 

2. Time-variant reliability analysis 

Let us start by stating the problem of time-variant reliability analy- 
sis. Consider a mechanical system whose behavior is both random and 
time-dependent. Its performance function is then denoted by G ( X, Y ( t ), 
t ), where X and Y ( t ) denote respectively the vectors of random variables 
and stochastic processes and t is the time parameter. X includes the ran- 
dom parameters that may be related to materials properties and geome- 
try. Y ( t ) collects the time-dependent random loadings (e.g. wind, waves, 
traffic,…). The time parameter usually appears explicitly when the ana- 
lytical evolution in time of the degradation phenomena are known (e.g. 
corrosion). The system reliability state is associated to the sign of G ( X, 

Y ( t ), t ) and is defined as follows: 

• failing state if G ( X, Y ( t ), t ) < 0; 
• reliable state if G ( X, Y ( t ), t ) > 0; 
• limit state if 𝐺( 𝐗 , 𝐘 ( 𝑡 ) , 𝑡 ) = 0 . 

2.1. Discretization of stochastic processes 

Stochastic processes are the mathematical tools used to represent 
time-dependent random loadings. Often stochastic processes are as- 
sumed to be Gaussian both for simplicity and due to the central limit 
theorem. Many works have then focused on developing methods for dis- 
cretizing particularly Gaussian processes. Some methods use series ex- 
pansion techniques, such as expansion optimal linear estimation (EOLE) 
[28] , orthogonal series expansion (OSE) [29] and Karhunen-Loève (KL) 
expansion [30] . Reviews of these methods can be found in [31] . How- 
ever in reality, loads may exhibit non-Gaussian properties and even 
non-stationary behavior over time [32] . Some methods are developed 
for simulating stationary non-Gaussian processes mainly through non- 
linear transformation of Gaussian processes [33] . In [34,35] , a frame- 
work that uses KL is proposed for generating strongly non-Gaussian and 
non-stationary stochastic processes. It incorporates KL into an iterative 
mapping scheme to reproduce the non-Gaussian marginal distribution 
function. This method is retained in this work because it is both efficient 
and easy to implement. 

Consider a stochastic process Y ( t ) that is indexed on a bounded time 
domain 𝐷 𝑇 = [ 𝑡 0 , 𝑡 𝑓 ] . It is completely described by its mean �̄� ( 𝑡 ) , auto- 
covariance function C ( t i , t j ) and marginal distribution. The classical KL 
expansion consists in approximating Y ( t ) as follows: 

𝒀 ( 𝒕 ) ≈ �̄� ( 𝒕 ) + 

𝑴 ∑
𝒌 =1 

√
𝜸𝒌 𝜻𝒌 𝒇 𝒌 ( 𝒕 ) (1) 

where M is the truncation order of the KL expansion and 𝜁k are uncor- 
related random variables of zero mean and unit variance following the 
same probability density function of Y ( t ). 𝛾k and f k ( t ) are respectively 
the eigenvalues and eigenfunctions of C ( t i , t j ). They are solution of the 
homogenous Fredholm integral equation of the second kind given by: 

∫𝑫 𝑻 𝑪 ( 𝒔 , 𝒕 ) 𝒇 𝒌 ( 𝒔 ) 𝒅 𝒔 = 𝜸𝒌 𝒇 𝒌 ( 𝒕 ) (2) 

In some specific cases, Eq. (2) can be solved analytically however in 
general, numerical methods such as the Galerkin technique [36] are to 
be used. The algorithm iterates on { 𝜁k } until finding the best set that en- 
sures the convergence of the autocovariance and marginal distribution 
functions of the process toward the real ones. 

2.2. Estimation of the probability of failure 

When all the stochastic processes are discretized, the performance 
function can be expressed in terms of only random variables and deter- 
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