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a b s t r a c t

The application of numerical transport solvers for the steady state plasma boundary of magnetic fu-
sion devices is related to the iterative approximation of a fixed-point of a non-linear map. Although 2D
(axisymmetric) or even 3D transport solvers are routinely applied for the quantification of steady state
plasma flows, unstable behavior can occur under certain conditions. A simple two-point model is applied
to demonstrate the generic nature of this kind of unstable behavior which can occur when the fixed-point
loses its stability and resulting in a period doubling route to chaos. Furthermore, it is demonstrated that
wavelike oscillations can occur at low divertor temperatures. An adaptive relaxation scheme is presented
which allows to suppress discrete and wavelike oscillations in order to stabilize the fixed-point iteration.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The quantification of plasma flows in the domain near exposed
surfaces is a key topic for the development of a magnetically con-
fined fusion reactor. These flows can significantly affect the life-
time of plasma facing components, and hence, their control poses
one of themajor challenges for the successful operation of the next
step fusion device ITER [1]. Computer simulations of the plasma
boundary both guide the interpretation of present fusion exper-
iments and aid the design activities for future devices. Toroidal
symmetry is often assumed in computational models for tokamak
configurations (the next step fusion device ITER is based on such a
configuration), which allows to reduce the complexity of the nu-
merical problem to two spatial dimensions. One such computa-
tionalmodel is the B2-EIRENE code [2,3] (also referred to as SOLPS),
which has meanwhile been established as a numerical tool for the
performance analysis of the ITER divertor (see [4] and references
therein).

However, despite the establishment of two dimensional mod-
els, three dimensional models have gained importance over the
last years. This is because stellarator configurations (an alterna-
tive concept for the magnetic confinement) are intrinsically non-
axisymmetric, and furthermore because 3D effects are relevant in
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tokamak configurations as well when non-axisymmetric resonant
magnetic perturbations (RMPs) from external coils are applied.
These are of considerable interest since the recent success in con-
trolling edge localized instabilities (ELMs) by RMPs [5–8]. As ELMs
are considered a major threat for the plasma facing components
in ITER [9], ELM control by RMPs has been integrated in the latest
ITER design [10]. A 3D computational model which allows to study
the impact of RMPs in steady state ITER-like configurations is the
EMC3–EIRENE code [11–13]: a coupled version of a Monte Carlo
solver for fluid edge plasma transport (EMC3) and a Monte Carlo
solver for kinetic transport of neutral gas (EIRENE).

Rather than calculating the evolution in time towards a station-
ary solution, the EMC3–EIRENE code provides a steady state solu-
tion bymeans of iterative approximation. The non-linear transport
coefficients such as the heat conductivity are fixed during one ap-
plication of the solver, and consequently, an iterative application is
required for a self consistent solution. Put in mathematical terms,
the transport solver can be represented by the non-linear opera-
tor Φ : X → Y with X, Y ∈ P which maps the plasma state X to
the plasma state Y (P denotes the abstract set of all plasma states).
A self consistent solution X∗ of the underlying physical model re-
quires that X∗

= Φ(X∗), i.e. it requires that X∗ is a fixed-point of
Φ . The simulation procedure described above then formally repre-
sents a fixed-point iterationXn+1 = Φ(Xn)based on an (within cer-
tain limits arbitrary) initial plasma state X0. However, only a very
basic convergence assessment for 3D edge plasma simulations re-
garding the residual noise level intrinsic to Monte Carlo methods
has been conducted so far [13,14].
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Recent simulations which explore access to so-called detached
plasma states have shown unstable behavior, i.e. densities and
temperatures do not converge to a steady level but begin to de-
velop continuous oscillations. Periodic oscillations and chaotic be-
havior are indeed intrinsic features of iterated non-linear systems
that can occur when the fixed-point loses its stability. Conse-
quently, these numerical instabilities limit the applicability of the
selected solver to the underlying physical problem. As the relia-
bility of sophisticated numerical models for the boundary of fu-
sion plasmas is dependent on stable convergence, we present an
analysis of the simulation procedure itself. For this purpose, we
introduce an iterated two-point model in Section 2, which allows
to reduce the dimensionality (and hence the numerical complex-
ity) of the problem while retaining characteristic physical and nu-
merical features. Under-relaxation is a common approach to avoid
divergence of the iterative solution, although there is no guaran-
tee that a converged solution can be found [15] (this is in particu-
lar demonstrated by the second example in Section 2). However, a
generalized form of under-relaxation known as stability transfor-
mation method (which includes special reflections in phase space)
has been introduced [16,17], and it has been shown that a trans-
formation exists that allows to stabilize a fixed-point. Neverthe-
less, the actual values of the transformation parameters remain
unknown, and scanning through all elements of the transforma-
tion class set is unfeasible for extensive simulations.

Motivated by the analysis of the simulation procedure given in
Section 2, we introduce an adaptive relaxation scheme in Section 3.
The principal idea is to adjust the relaxation factor in a way that
allows a fast and stable convergence. Introducing small perturba-
tions to a system parameter in order to control chaos has been
proposed some time ago [18], and in recent years some difficul-
ties of this approach have been overcome by methods that tweak
the relaxation factor for the purpose of accelerating the conver-
gence [19]. E.g. for 2D recirculating flows, a convergence acceler-
ation method has been presented [20] based on the ratio of the
residual norms of the two momentum equations. Furthermore,
a method for optimizing relaxation factors (SOAR) has been pre-
sented [21] which allows to improve the performance of the SIM-
PLE algorithm [15] for solving fluid flows. However,while the SOAR
method allows to reduce the overall computation time by reducing
the required number of iterations, it can increase the computation
time per iteration by a factor of 4–40. Our method on the other
hand, is based on a quick analysis of the history of characteristic
parameters, and can be implemented into the EMC3–EIRENE code
without essentially increasing the computation time per iteration.
The concept is similar to the fuzzy control algorithm presented
in [22] for a CFD solver in turbulent flow. But while this method
is designed to keep the amplitudes of high frequency harmonics at
small values, our method focuses on the oscillation cycle itself in
order to allow convergence in the first place.

2. Two-point model analysis of iterated transport solvers

The well established generic two-point model (see Sections 5.2
and 5.4 in [23] for details) provides a very basic approach to char-
acterize the plasma boundary. Its intention is to relate plasma con-
ditions ‘‘upstream’’ (index u, i.e. at the last closed magnetic flux
surface halfway between targets) to plasma conditions at the di-
vertor targets (index t). It is based on fluid plasma transport equa-
tions which can be considerably simplified to:

2 nt Tt = fmom nu Tu (1)

T 7/2
u = T 7/2

t +
7 fcond q∥ L

2 κ0e
(2)

1 − fpower

q∥ = γ e nt Tt cst . (3)

The upstream density nu [m−3
] and the parallel component of

the heat flux q∥ [Wm−2
] are taken as (physical) control parame-

ters, and L [m] is the upstream-to-target connection length. The
sheath heat transmission coefficient γ ≈ 7 and κ0e ≈ 2000 are
constant parameters. Dependent variables are the upstream tem-
perature Tu [eV], the downstream temperature Tt [eV] and the
downstream density nt [m−3

]. The sound speed at the target is
given by cst [ms−1

] =
√
2 e Tt/m and the ion mass m. A generic

extension by correction factors fpower, fmom, fcond ∈ [0, 1] allows to
include various processes which are neglected in the original ba-
sic two-point model (see below). An approximate solution can be
derived for prescribed correction factors:
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On the other hand, the following iterative scheme is introduced
in order to mimic the energy balance solver ΦT of an edge plasma
transport code such as EMC3:

Tt,(n+1) =


1 − fpower
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γ e nt cst(Tt,(n))
(7)
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which takes nt as unmodified input. The combined particle and
parallel momentum balance solver Φn of the EMC3 code can be
represented by

nt,(n+1) =
fmom nu Tu

2 Tt
(8)

which takes Tu and Tt as unmodified input. A relaxation scheme
Xn+1 → α Xn + (1 − α) Xn+1 (note that often α′

= 1 − α is re-
ferred to as relaxation factor) is applied to each of ΦT and Φn in
order to stabilize the iterative procedure, which has been found to
be sufficient for most applications in the past. The operator Φ is
then defined by the successive application of ΦT and Φn.

Example 1. The fixed-point iteration for Tt is illustrated in Fig. 1
for the basic two-pointmodel (that is fpower = 0, fcond = fmom = 1).
The control parameters are set to nu = 4.2 · 1019 m−3, q∥ =

5
9 ·

108 Wm−2 and L = 50m. Initial conditions are set to Tu,(0) =

Tt,(0) = 40 eV and nt,(0) = 1019 m−3. The approximate solutions
from (4)–(6) are:

T ∗

u ≈ 81.35 eV, T ∗

t ≈ 8.76 eV,

n∗

t ≈ 1.95 · 1020 m−3.
(9)

It can be seen that the iterative method converges only for re-
laxation factors α = 0.6 and α = 0.8, while oscillations occur
for the smaller relaxation factors α = 0.2 and α = 0.4. Such os-
cillatory behavior is a feature of non-linear maps, the Logistic map
being a famous example [24]. This map exhibits a ‘‘period doubling
route to chaos’’, i.e. the oscillation period doubles at certain values
of a control parameter, turning to chaotic behavior at some point.
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