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a b s t r a c t 

Systems performing consecutive non-overlapping mission phases in a random environment are considered. Each 

phase is performed by a specific 1-out-of- n subsystem consisting of statistically identical parallel elements with 

the same functionality. The environment is modeled by the Poisson process of shocks commonly affecting all 

elements, by increasing their failure rate. A method for evaluating the mission success probability for arbitrary 

redundancy level in each subsystem is presented. The constrained redundancy allocation problem is formulated 

and solved. Illustrative examples are presented. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

When redundancy is used for enhancing system reliability, the op- 

timal redundancy allocation problem (RAP) arises and the number of 

redundant elements in different subsystems should be determined to 

provide the desired level of the entire system reliability (subject to con- 

straints imposed on system cost, weight, size etc.). The RAP has been 

intensively investigated for systems with different structures and re- 

dundancy types [1,2] . Numerous existing papers are focused on active 

or hot standby redundancy systems (with 1-out-of- n : G or k -out-of- n : 

G series-parallel structures). The employed numerical methods include 

dynamic programming [3] , integer programming [4,5] , genetic algo- 

rithm (GA) [6,7] , ant colony optimization algorithm [8] , Tabu search 

[9] , swarm optimization [10] etc. RAP has also been considered for the 

series-parallel multi-state systems with homogeneous [11–13] or het- 

erogeneous [14–16] component choices for each subsystem. Refer to 

[17,18] for the state-of-the-art reviews on reliability optimization prob- 

lems and the corresponding solutions. 

When systems operate in a dangerous or hostile environment, they 

can be exposed to the external impacts/shocks effecting all system ele- 

ments. The risks of these common cause failures can affect the optimal 

redundancy allocation, which has been taken into account in [19,20] . 

A system can undergo different consecutive stages/phases during the 

mission. Each phase is performed by a specific subsystem. There exists 

a vast literature on phased mission systems [21–24] . Reliability of the 

phased mission systems with internal/external common cause failures 
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was analyzed in [25–30] . The RAP for such systems was considered in 

[31,32] and the optimal component grouping in [33,34] . However, in 

all the previous studies it was always assumed that the external impacts 

can cause elements failure with a given probability, but cannot cause 

elements deterioration and increase their failure rate. 

In this paper we consider a situation when the phased mission system 

can experience numerous random shocks affecting all system elements 

and causing their deterioration. Each mission phase is characterized by 

a random shock process with the specific intensity. The phases are in- 

dependent i.e. the phase duration and parameters of shock process do 

not depend on those of the previous phases. We present an algorithm 

for the mission success probability evaluation and solve the constrained 

RAP. 

As a motivating example, consider a space mission that includes 

launching, travel, landing, surface drilling, chemical analysis of the ob- 

tained specimens, and data transmission to Earth. Each phase is per- 

formed by a specific subsystem. In each phase the entire system is ex- 

posed to specific environments, characterized by different shock rates 

(such as extreme temperatures, radiation bursts and electromagnetic 

surges affecting the electronic parts of subsystems). Depending on sub- 

system protection and nature of subsystem elements, the influence of 

shocks on the equipment degradation can be different for different sub- 

systems. The shock rates for different mission phases are usually known 

from previous probes history or from physical analysis of different en- 

vironments. To enhance the mission success probability, a certain level 

of redundancy can be provided in each subsystem. However stringer 

weight, space and cost constraints limit the redundancy level in each 
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Acronyms 

MSP mission success probability 

RAP redundancy allocation problem 

HPP homogeneous Poisson process 

NHPP non-homogeneous Poisson process 

Notation 

N number of phases (subsystems) 

𝜏n duration of phase n 

V n constant shock rate in phase n 

K ( t ) number of shocks in [0, t ) 

h n number of identical elements in subsystem n 

S MSP 

C system cost 

C 

∗ cost constraint 

s n probability that subsystem n completes its task 

c n cost of element belonging to subsystem n 

𝜆n ( t ) intrinsic failure rate of element belonging to subsystem 

n 

Λ𝑜 
𝑛 
, Λ𝑖 

𝑛 
intrinsic failure rate in operation, idle modes for ele- 

ment belonging to subsystem n 

𝜂n shock influence factor for element belonging to sub- 

system n 

L n time to failure of element belonging to subsystem n 

T n time till the end if the n th phase 

𝜑 n ( T n , k ) Pr ( 𝐿 𝑛 > 𝑇 𝑛 |𝐾( 𝑡 ) = 𝑘 ) 
𝜌n ( T n , k ) Pr ( 𝐿 𝑛 > 𝑇 𝑛 , 𝐾( 𝑇 𝑛 ) = 𝑘 ) 
𝜋n ( T n , k ) Pr ( 𝐾( 𝑇 𝑛 ) = 𝑘 ) 
P ( 𝜏, m, V ) probability that exactly m shocks happen during time 

𝜏 in shock HPP with rate V 

particular subsystem and in the entire system levels. Therefore, the op- 

timal redundancy allocation problem arises. 

Similar setting can be relevant for some military systems when the 

mission consists of consecutive phases (such as target detection, deliv- 

ery, steering, detonation), consecutively performed by different subsys- 

tems. During the mission, the system acts in a hostile environment and 

is exposed to intentional attacks causing shocks affecting all subsystems 

simultaneously. 

There exists a vast literature on redundancy allocation. However, 

to the best of our knowledge, the common effect of dynamic random 

environment on the redundancy allocation in phased mission systems 

have never been considered. 

Combinations of internal failures and external shocks have been in- 

tensively discussed in the literature. See, e.g., references [35,36] for the 

case when these failure modes are independent and [37–39] for the de- 

pendence between the shock and wear processes. The latter was stud- 

ied mainly in the framework of optimal preventive maintenance. In the 

model considered in our paper, shocks act directly on the internal fail- 

ure rate increasing it on a certain value with each impact. This setting 

was not discussed in the literature for the RAP problem. 

The paper is organized as follows. Section 2 formulates the redun- 

dancy allocation problem. Section 3 presents an algorithm for evaluat- 

ing the mission success probability. Illustrative examples are presented 

in Section 4 . Finally, concluding remarks are given in Section 5 . 

2. Problem formulation 

A system is operating in a dynamic random environment modeled by 

a shock process { K ( t ), t ≥ 0}, where K ( t ) is a number of shocks in [0, t ). 

The shock process is observed and its rate can be estimated from histor- 

ical or simulated data. A system’s mission presumes performing N con- 

secutive non-overlapping independent phases. Each phase n (1 ≤ n ≤ N ) 

has duration 𝜏n and is characterized by a specific shock rate V n of the 

homogeneous Poisson process (HPP), thus forming a piecewise constant 

rate of the corresponding non-homogeneous Poisson process (NHPP) 

for all phases that will be denoted by v ( t ). Each phase n is performed 

by specific subsystem consisting of h n statistically identical elements in 

parallel, which for convenience, will be called ‘subsystem n ’. Each sub- 

system is switched off/unpowered after completing its specific mission 

phase. During the entire mission, all elements of a system are exposed 

to external shocks. The same shocks affect all system elements that are 

operating or have to operate at the next phases. Distinct from the con- 

ventional extreme shock models (see, e.g., [40] and references therein), 

shocks in this model do not cause immediate failure of the elements, but 

result in their gradual deterioration/ageing, which is expressed by in- 

crease in their failure rates. This is reflected in a failure model presented 

in the next section. The failures of elements under the same realization 

of the shock process are assumed to be independent events. The system 

succeeds to complete its mission if for any n (1 ≤ n ≤ N ), at least one el- 

ement of subsystem n survives until the end of phase n . The problem is 

to find the optimal system redundancy vector h = { h 1 ,…, h N } maximizing 

the mission success probability S ( h ) subject to constraints on the number 

of elements in each subsystem and on the entire system cost (weight): 

max 𝑆( 𝒉 ) = 

𝑁 ∏
𝑛 =1 

⎛ ⎜ ⎜ ⎝ 1 − 

( 

1 − 𝑠 𝑛 

( 

𝑛 ∑
𝑖 =1 

𝜏𝑖 

) ) ℎ 𝑛 ⎞ ⎟ ⎟ ⎠ 
s . t . 1 ≤ ℎ 𝑛 ≤ 𝐻 𝑛 , 𝐶( 𝒉 ) = 

𝑁 ∑
𝑛 =1 

𝑐 𝑛 ℎ 𝑛 < 𝐶 

∗ , (1) 

where s n ( t ) is the probability that the element of type n survives time t 

from the start of the mission, H n is the maximum number of elements al- 

lowed for subsystem n, C 

∗ is the maximum allowed system cost (weight). 

In the general case, each phase can be performed by groups of sub- 

systems composing more complex configurations. For example, during 

the travel phase of a space mission, a navigation and propulsion (tra- 

jectory correction) subsystems should operate simultaneously, which 

corresponds to a series-parallel configuration. This can be taken into 

account by modifying the mission success probability function (1) . 

For example, in the case of two phases, the first of which is per- 

formed by the first N 1 subsystems and the second is performed by 

the rest N 

–N 1 subsystems, the mission success probability takes the 

form 𝑆( 𝒉 ) = ( 
∏𝑁 1 

𝑛 =1 ( 1 − ( 1 − 𝑠 𝑛 ( 𝜏1 ) ) ℎ 𝑛 ) )( 
∏𝑁 

𝑛 = 𝑁 1 +1 
( 1 − ( 1 − 𝑠 𝑛 ( 𝜏1 + 𝜏2 ) ) ℎ 𝑛 ) ) . 

The methodology presented in this paper can be applied for any config- 

uration of groups of subsystems. However, for the sake of simplicity, we 

will further consider the simplest case (1) . 

3. Failure and survival model 

The effect of shocks on elements belonging to subsystem n (1 ≤ n ≤ N ) 

is described by the following stochastic model: 

�̃�𝑛 ( 𝑡 ) = 𝜆𝑛 ( 𝑡 ) + 𝜂𝑛 𝐾( 𝑡 ) , (2) 

where 𝜆n ( t ) is an intrinsic failure rate of identical elements in this sub- 

system (without shocks) and 𝜂n is a shock influence factor describing the 

jump in the failure rate of these elements on occurrence of each shock 

[41] . The value of parameter 𝜂n can be estimated by testing elements 

failure rates in different environments, characterized by specific known 

shock rates. Note that, { ̃𝜆𝑛 ( 𝑡 ) , 𝑡 ≥ 0} is a stochastic process, which is of- 

ten called in the literature a hazard (failure) rate process [42,43] . In 

each realization, the second term in the r.h.s. of (2) is increasing, which 

describes elements ’ deterioration/ageing. The conventional failure rate 

that corresponds to the process { ̃𝜆𝑛 ( 𝑡 ) , 𝑡 ≥ 0} can be derived by obtaining 

the corresponding conditional (on survival) expectation. Specifically, 

for the HPP with rate V n and the constant intrinsic failure rate Λn , it 

becomes the following increasing function [41] 

Λ𝑛 + 𝜂𝑛 𝐸[ 𝐾( 𝑡 ) |𝐿 𝑛 > 𝑡 ] = Λ𝑛 + 𝑉 𝑛 (1 − exp {− 𝜂𝑛 𝑡 }) , 1 ≤ 𝑛 ≤ 𝑁, 

where L n denotes the time to failure of an element from the subsystem 

n. 
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