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a b s t r a c t 

We discuss the main features of Generalized Continuous Time Bayesian Networks (GCTBN) as a dependability 

formalism: we resort to two specific case studies adapted from the literature, and we discuss modelling choices, 

analysis results and advantages with respect to other formalisms. From the modelling point of view, GTCBN al- 

low the introduction of general probabilistic dependencies and conditional dependencies in state transition rates 

of system components. From the analysis point of view, any task ascribable to a posterior probability compu- 

tation can be implemented, among which the computation of system unreliability, importance indices, system 

monitoring, prediction and diagnosis. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the reliability field, an interesting trade-off between combinato- 
rial models [1] (e.g. Fault Trees, Reliability Block Diagrams , etc.) and state 
space based models [1] (e.g. Markov Chains, Petri Nets , etc.) is given by 
Probabilistic Graphical Models ( PGM 

1 ) [2–4] , among which Bayesian Net- 

works ( BN ) are the most popular formalism [5] . Standard BN are how- 
ever static models representing a snapshot at a given time point of the 
system of interest. When time is taken into account, the main choice con- 
cerns whether to consider it as a discrete or a continuous dimension. In 
the former case, models like Dynamic Bayesian Networks ( DBN ) [6] have 
become a natural choice [7–9] . However, there is not always an ob- 
vious discrete time unit, so Continuous Time Bayesian Networks ( CTBN ) 
[10] have started to be investigated. 

In [11] a generalisation of CTBN is proposed by introducing the pres- 
ence of nodes which have no explicit temporal evolution; the values of 
such nodes are, in fact, “immediately ” determined, depending on the 
values of other nodes in the network. This allows us to model processes 
having both a continuous-time temporal component and a static compo- 
nent capturing the logical/probabilistic aspects determined by specific 
events occurring in the modelled process. This formalism is called Gen- 

eralized Continuous Time Bayesian Network ( GCTBN ). 
In the present paper, we show how the GCTBN language can be suit- 

ably used to model dependable systems, and in particular, both static 
as well as dynamic dependencies among system components, like those 
introduced in Dynamic Fault Trees ( DFT ) [12] : the combination of prin- 
cipal and spare components, functional dependencies and priority AND 
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are specific dynamic dependencies that can be easily accounted for, in 
a GCTBN model. In addition, specific dependencies, more general than 
those envisioned by DFT, can be captured through GCTBN; this makes 
possible to overcome the often adopted assumption of independent bi- 
nary components, without the need of explicitly enumerating the whole 
system state space, as in standard state space based models like Continu- 

ous Time Markov Chain ( CTMC ) [1] . Repairable components can also be 
introduced, together with the possibility of modelling repair or mainte- 
nance strategies conditioned on the occurrence of specific events in the 
modelled system. 

From the analytical point of view, probabilistic inference can be per- 
formed through the computation of arbitrary posterior probabilities, 
where the status of system components as well as subsystems can be 
queried at any required time point, given that a temporal stream of ob- 
servations (the evidence) is provided. This allows us to perform standard 
dependability analyses, like system reliability or importance of compo- 
nents, as well as to perform more general fault detection and identifica- 
tion procedures. 

This paper (which is an elaborated extension of the work presented 
in [13] ) is organised as follows: in Section 2 we present the details about 
the involved formalisms; in Section 3 we provide the rules to generate 
a GCTBN from a DFT model; in Sections 4 and 5 we present two case 
studies and we discuss modelling choices and analysis results. In par- 
ticular, we show how to exploit posterior probability computation for 
implementing dependability analysis: for each case study we compute 
dependability measures (like system unreliability), importance mea- 
sures (like Birnbaum index or Fussell–Vesely index [14] ), and diagnostic 
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measures (like general posterior probability of faults, given specific sen- 
sor observations). The first case study is aimed at showing the advan- 
tages of GCTBN inference, with respect to standard DFT analysis. The 
second case study focuses on advantages of GCTBN with respect to DBN, 
as discussed into details in Section 6 where we highlight the features 
making GCTBN suitable to dependability modelling and analysis. 

2. Formal definitions 

2.1. Dynamic Fault Trees 

Fault Trees ( FT ) [1] are a combinatorial formalism (with a 
widespread use in reliability) that represent how the failure propagates 
from the components ( basic events ) to the system ( top event ); Boolean 

gates (AND, OR, k out of n ( k:n ), etc.) are used to this end. Dynamic Fault 

Trees ( DFT ) [12] augment standard FT with dynamic gates, with the aim 

of introducing specific dynamic (i.e., time-dependent) dependencies in 
the system structure and behaviour; more specifically such gates are the 
following (see [12] ): 

• Functional Dependency gate ( FDEP ) —given a trigger event T , the de- 
pendent events 𝐷 1 , … , 𝐷 𝑛 are immediately forced to occur when T 
occurs ( Fig. 3 a and b). 

• Priority And gate ( PAND ) —given 𝑋 1 , … , 𝑋 𝑛 as input events and Y as 
output event, Y fails if all 𝑋 1 , … , 𝑋 𝑛 have occurred and only in a 
specified order ( Fig. 4 a). 

• Spare gate —this gate models the presence of the spare components 
𝑆 1 , … , 𝑆 𝑛 able to replace a main component M when it fails ( Fig. 5 a). 
Spares can be in three states: dormant (or stand-by), working, failed. 
The spare failure rate changes depending on its current state: if the 
failure rate of the spare is 𝜆 in the working state, 𝛼𝜆 is its failure rate 
in the dormant state, with 0 ≤ 𝛼 ≤ 1; 𝛼 is called dormancy factor. 
The output event occurs if the main component fails and there are 
no spares available to replace it. The gate is called Hot ( HSP ) when 
𝛼 = 1 , Warm ( WSP ) when 0 < 𝛼 < 1, and Cold ( CSP ) when 𝛼 = 0 . 

• Sequence Enforcing gate ( SEQ ) —this gate forces a set of basic events 
to occur in a specific order. We omit to discuss SEQ here, since it can 
be modelled as a special case of a CSP [15] . 

2.2. Bayesian Networks 

Bayesian Networks ( BN ) (also known as Belief Networks ) [5] are a 
widely used formalism for representing uncertain knowledge in Artifi- 
cial Intelligence [16,17] . They have then gained a great popularity in 
the reliability field as well, because of their flexibility in modelling and 
analysing dependable systems [5,7,18,19] . 

A Bayesian Network ( BN ) is a pair 𝑁 = ⟨⟨𝑉 , 𝐸⟩, 𝑃 ⟩ where ⟨V, E ⟩ are 
the nodes and the edges of a Directed Acyclic Graph ( DAG ) respectively, 
and P is a probability distribution over V . Discrete random variables 𝑉 = 

{ 𝑋 1 , 𝑋 2 , …𝑋 𝑛 } are assigned to the nodes, while each edge e ∈ E from 

node X to node Y represents a probabilistic relationship between the 
variables represented by X and Y , where Y directly depends on X . This 
interpretation allows us to factorise the joint probability of the variables 
of the model, by considering only the conditional distribution of each 
variable with respect to their parent variables in the DAG, as shown in 
Eq. (1) . 

𝑃 [ 𝑋 1 , 𝑋 2 , … , 𝑋 𝑛 ] = 

𝑛 ∏
𝑖 =1 
𝑃 [ 𝑋 𝑖 |𝑃 𝑎𝑟𝑒𝑛𝑡 ( 𝑋 𝑖 )] (1) 

In the standard case of discrete variables, each local distribution can be 
described in tabular form (i.e., a column for each combination of states 
of the parent variables), called Conditional Probability Table ( CPT ). 

Because of the availability of the joint probability distribution, any 
kind of probabilistic query of the form P ( Q | e ) can be computed, where 
Q is any set of unobserved variables and e is a configuration of a set of 
observed variables called the evidence . 

2.3. Dynamic Bayesian Networks 

Given a set of time-dependent state variables 𝑋 1 , … , 𝑋 𝑛 , and given 
a BN N defined on such variables, a Dynamic Bayesian Network ( DBN ) 
[6] is essentially a replication of N over two time slices 𝑡 − Δ and t ( Δ
is the time discretisation step), with the addition of a set of arcs rep- 
resenting the transition model. Let 𝑋 

𝑡 
𝑖 

denote the copy of variable X i 

at time slice t , the transition model is defined through a distribution 
𝑃 [ 𝑋 

𝑡 
𝑖 
|𝑋 

𝑡 −Δ
𝑖 
, 𝑌 𝑡 −Δ, 𝑌 𝑡 ] where 𝑌 𝑡 −Δ is any set of variables at slice 𝑡 − Δ dif- 

ferent from X i (possibly the empty set), and Y 

t is any set of variables at 
slice t different from X i (possibly the empty set). 

An edge connecting a variable 𝑋 

𝑡 −Δ
𝑖 

in the slice 𝑡 − Δ to the variable 
𝑋 

𝑡 
𝑗 

in the slice t , is called temporal arc (if 𝑖 = 𝑗 the arc connects the two 
instances of the same variable). The dependency of a given node on its 
parent nodes (possibly including its historical copy) is quantified in its 
CPT. 

2.4. Continuous Time Bayesian Networks 

Following the original paper [10] , a Continuous Time Bayesian Net- 

work ( CTBN ) is defined as follows: let 𝑉 = { 𝑋 1 , … , 𝑋 𝑛 } be a set of dis- 
crete variables, a CTBN over X consists of two components. The first one 
is an initial distribution 𝑃 0 

𝑉 
over V (possibly specified as a standard BN 

over V ). The second component is a continuous-time transition model 
specified as: 

• a directed graph G whose nodes are 𝑋 1 , … , 𝑋 𝑛 ( Pa ( X i ) denotes the 
parents of X i in G); 

• a Conditional Intensity Matrix ( CIM ) 𝑄 𝑋 𝑖 |𝑃𝑎 ( 𝑋 𝑖 ) for every X i ∈ V . The 
CIM of a variable X i provides the transition rates 2 for each possible 
pair of values of X i , given any possible combination of the parent 
nodes ’ values. 

With respect to BN and DBN, having an acyclic graph structure 
(DAG), cycles are instead permitted in CTBN where a node (variable) 
X i , ancestor of X j , can be reachable from X j . A cycle could be even com- 
posed by one node X i : X i ∈ Pa ( X i ). 

2.5. Generalised Continuous Time Bayesian Networks 

2.5.1. Definition 

Given a set of discrete variables 𝑉 = { 𝑋 1 , … , 𝑋 𝑛 } partitioned into 
the sets D (delayed variables) and I (immediate variables), a Generalised 

Continuous Time Bayesian Network ( GCTBN ) [11] is a pair ⟨𝑃 0 
𝑉 
, 𝐺⟩ where 

• 𝑃 0 
𝑉 

is an initial probability distribution over D ; 
• G is a directed graph whose nodes are 𝑋 1 , … , 𝑋 𝑛 such that 

– there is no directed cycle in G composed only by nodes in the set 
I ; 

– for each node X ∈ I a CPT P [ X | Pa ( X )] is defined (as in standard 
BN and DBN); 

– for each node X ∈ D a CIM Q X | Pa ( X ) is defined (as in CTBN). 

Delayed (or temporal) nodes represent variables with a continuous 
time evolution; we consider the case when they are ruled by exponential 
transition rates conditioned by the values of parent variables (that may 
be either delayed or immediate). Delayed nodes have a CIM of rates 
associated with them; entries of a CIM Q Y | Pa ( Y ) can take values in IR ∪∞
with ∞ meaning an immediate (i.e., a zero time) transition between two 
states of a variable. Immediate nodes instead, are introduced in order to 
capture variables whose evolution is not ruled by transition rates, but 
is conditionally determined, at a given time point, by other variables 
in the model. Therefore immediate nodes are treated as usual chance 
nodes in a BN and have a standard CPT associated with them. 

2 In the following we will assume an exponential distribution for the sojourn time in a 

given state and constant transition rates. 

2 
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