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a b s t r a c t

We present a high order one-step ADER–WENO finite volume scheme with space–time adaptive mesh
refinement (AMR) for the solution of the special relativistic hydrodynamic and magnetohydrodynamic
equations. By adopting a local discontinuous Galerkin predictor method, a high order one-step time
discretization is obtained, with no need for Runge–Kutta sub-steps. This turns out to be particularly
advantageous in combination with space–time adaptive mesh refinement, which has been implemented
following a ‘‘cell-by-cell’’ approach. As in existing second order AMR methods, also the present higher
order AMR algorithm features time-accurate local time stepping (LTS), where grids on different spatial
refinement levels are allowed to use different time steps.

We also compare two different Riemann solvers for the computation of the numerical fluxes at the cell
interfaces. The new scheme has been validated over a sample of numerical test problems in one, two and
three spatial dimensions, exploring its ability in resolving the propagation of relativistic hydrodynamical
andmagnetohydrodynamical waves in different physical regimes. The astrophysical relevance of the new
code for the study of the Richtmyer–Meshkov instability is briefly discussed in viewof future applications.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The numericalmodeling of complex astrophysical flows that in-
volve relativistic processes requires the development of more and
more sophisticated codes. Relevant examples of relativistic phe-
nomena whose understanding can greatly benefit from hydrody-
namic and magnetohydrodynamic numerical simulations include
extragalactic jets, gamma-ray-bursts, accretion onto compact ob-
jects, binary mergers of neutron stars (or black holes), relativistic
heavy-ion collisions and so on.

Until few years ago, most of the applications in numerical rela-
tivistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD)
used second-order accurate, typically TVD, numerical codes. The
scientific progress that has been made possible by these im-
plementations is rather significant and not always appreciated
enough, see the living reviews byMartí andMüller [1] and Font [2]
plus references therein. However, the necessity of improving the
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accuracy of the computations, especially in the presence of com-
plex phenomena such as instabilities or turbulence, combinedwith
computational resources which are inevitably always limited, has
motivated a strong research effort along two different directions.
The first direction is represented by the development of high order
schemes (better than second order in space and time), while the
second direction consists in the implementation of efficient adap-
tive mesh refinement (AMR) algorithms. Taken separately, high
order numerical schemes and AMR techniques have a long history,
which is embarrassing to summarize in few words. The first high
order special relativistic numerical scheme is due to Dolezal [3],
who, in the context of ultra-relativistic nuclear collision ex-
periments, implemented a conservative finite difference scheme
using ENO reconstruction in space and Runge–Kutta time integra-
tion, but without Riemann solvers. The first transposition of this
approach to the astrophysical context is due to Del Zanna and
Bucciantini [4], who, in addition, used local Riemann problems to
guarantee the upwind character of the scheme. Since then, sev-
eral high order schemes have been proposed and applied to a vari-
ety of different astrophysical problems,with andwithoutmagnetic
fields, both in the special and in the general relativistic regime (see
[5–10]). Though different under many respects, a common feature
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of all these approaches is the use of a multi-step Runge–Kutta time
integrator. A few years ago, Dumbser et al. [11] proposed an al-
ternative idea for obtaining a high order integration in time, that
avoids Runge–Kutta schemes altogether and originates from the
ADER philosophy of Toro and Titarev [12]. According to this idea,
which is followed also in this work, an arbitrary high order numer-
ical schemewith just one step for the time update can be obtained,
provided a high order time evolution is performed locally (namely
within each cell), for the reconstructed polynomials. The first im-
plementation of such ADER schemes in the context of ideal rela-
tivistic magnetohydrodynamics can be found in [13] and has later
been successfully extended also to the non-ideal relativistic MHD
equations in [14].

The implementation of AMR techniques has also a rich tradition
in relativistic hydrodynamics and magnetohydrodynamics.1 The
first occurrence is documented in [16] followed by Dünmez [17],
Evans et al. [18], van der Holst et al. [19], Tao et al. [20], Etienne
et al. [21], De Colle et al. [22], Liebling et al. [23], Lehner et al. [24]
and East et al. [25].

The combination of high order relativistic codes with AMR has
a much more recent history. Relevant examples are given by the
works of Mignone et al. [26], who combined the AMR library
CHOMBO, which originated from the original work of Berger and
Oliger [27], Berger [28] and Berger and Colella [29], with the ver-
satile PLUTO code, using a Corner-Transport-Upwind scheme to-
getherwith a third-orderWENO reconstruction in space; Anderson
et al. [30], who solved the equations of general relativistic mag-
netohydrodynamics using a conservative finite difference scheme
(with reconstruction of primitive variables plus Riemann solvers);
Zhang andMacFadyen [31], who implemented both a conservative
finite difference scheme (with reconstruction of fluxes and no need
for Riemann solvers) and a finite volumemethod,within the block-
structured AMR package PARAMESH of MacNeice et al. [32].

Contrary to the above mentioned approaches, all of them
sharing a TVD Runge–Kutta for the time integration, in this paper
we present an ADER–WENO finite volume scheme for solving
the special relativistic magnetohydrodynamics equations, with
adaptive mesh refinement. In [33] we have proposed the first
ADER-AMR finite volume numerical scheme for the Newtonian
Euler equations and here we propose the relativistic extension of
our new approach. The use of a one-step scheme in time allows
the implementation of time-accurate local time stepping (LTS) in
a very natural and straight forward manner and has already been
successfully applied in the context of high order Discontinuous
Galerkin schemes with LTS (see [34–37]).

The outline of this paper is the following. In Section 2we briefly
recall the conservative formulation of special relativistic hydrody-
namics. Section 3 is devoted to the description of the numerical
method,while Section 4 contains the results of the new scheme. Fi-
nally, Section 5 concludes our work, with a discussion about future
astrophysical applications. In the followingwewill assume a signa-
ture {−,+,+,+} for the space–timemetric andwewill use Greek
letters µ, ν, λ, . . . (running from 0 to 3) for four-dimensional
space–time tensor components, while Latin letters i, j, k, . . . (run-
ning from 1 to 3) will be employed for three-dimensional spatial
tensor components. Moreover, we set the speed of light c = 1 and
we adopt the Lorentz–Heaviside notation for the electromagnetic
quantities, such that all

√
4π factors disappears.

1 We are not mentioning here the whole family of AMR implementations
in vacuum space–times, namely without matter, which were initiated by
Choptuik [15].

2. Special relativistic magnetohydrodynamics

In the following we consider a perfect magneto-fluid, under the
assumption of infinite conductivity (ideal RMHD), in a Minkowski
space–time with Cartesian coordinates, for which the metric is
given by

ds2 = gµνdxµdxν = −dt2 + dx2 + dy2 + dz2. (1)

The fluid is described by an energy–momentum tensor Tαβ

Tαβ = (ρh + b2)uαuβ + (p + b2/2)gαβ − bαbβ , (2)

where uα is the four-velocity of the fluid, bα is the four-vector of the
magnetic field, b2 = bαbα , while ρ, h = 1 + ϵ + p/ρ, ϵ and p are
the rest-mass density, the specific enthalpy, the specific internal
energy, and the thermal pressure, respectively. All these quantities
are measured in the co-moving frame of the fluid. We assume the
pressure is related to ρ and ϵ through the ideal-gas equation of
state (EOS), i.e.

p = ρϵ(γ − 1), (3)

where γ is the (constant) adiabatic index of the gas. The equations
of special relativistic magneto-hydrodynamics, can be written in
covariant form simply as

∇α(ρuα) = 0, (4)

∇αTαβ = 0, (5)

∇αF∗αβ
= 0, (6)

where F∗αβ is the dual of the electromagnetic tensor [38]. However,
for numerical purposes it is convenient to recast them in conser-
vative form as [39–41]

∂tu + ∂ifi = 0, (7)

where the conserved variables and the corresponding fluxes in the
i direction are given by

u =

D
Sj
U
Bj

 , fi =


viD
W i

j

S i

ϵ jikEk

 . (8)

The conserved variables (D, Sj,U, Bj) are related to the rest-mass
density ρ, to the thermal pressure p, to the fluid velocity vi and to
the magnetic field Bi by2

D = ρW , (9)

Si = ρhW 2vi + ϵijkEjBk, (10)

U = ρhW 2
− p +

1
2
(E2

+ B2), (11)

where ϵijk is the Levi-Civita tensor and δij is the Kronecker symbol.
We have used W = (1 − v2)−1/2 to denote the Lorentz factor of
the fluid with respect to the Eulerian observer at rest in the Carte-
sian coordinate system, while Ei are the components of the electric
field, which, in ideal magnetohydrodynamics, is simply given by
E⃗ = −v⃗ × B⃗. The tensor

Wij ≡ ρhW 2vivj − EiEj − BiBj +


p +

1
2
(E2

+ B2)


δij (12)

2 We note that, since the space–time is flat and we are using Cartesian
coordinates, the covariant and the contravariant components of spatial vectors can
be used interchangeably, namely Ai = Ai , for the generic vector A⃗.
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