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In this paper, we present a new methodology for quantifying the reliability of complex systems, using
techniques from network graph theory. In recent years, network theory has been applied to many areas
of research and has allowed us to gain insight into the behaviour of real systems that would otherwise be
difficult or impossible to analyse, for example increasingly complex infrastructure systems. Although this
work has made great advances in understanding complex systems, the vast majority of these studies only
consider a systems topological reliability and largely ignore their spatial component. It has been shown
that the omission of this spatial component can have potentially devastating consequences. In this paper,
we propose a number of algorithms for generating a range of synthetic spatial networks with different
topological and spatial characteristics and identify real-world networks that share the same character-
istics. We assess the influence of nodal location and the spatial distribution of highly connected nodes on
hazard tolerance by comparing our generic networks to benchmark networks. We discuss the relevance
of these findings for real world networks and show that the combination of topological and spatial

configurations renders many real world networks vulnerable to certain spatial hazards.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Infrastructure systems, including water, electricity, transporta-
tion and telecommunication, are of critical importance to our
modern communities. The reliability of these physical assets and
the services they provide are vital for ensuring national security,
public health and productivity [20]. It is therefore no surprise that
the reliability of these systems has received a great deal of at-
tention in recent years [23]. However, these systems are becoming
increasingly complex and interdependent, meaning that they now
rely on each other to function normally [15,21], and this increased
complexity and reliance is making these networked infrastructure
systems harder to manage and assess [33]. We therefore require
new tools and techniques to assess their reliability. One possible
solution is to use a network graph theory approach to quantify the
reliability of these complex infrastructure systems.

Network graph theory has previously been used to analyse a
range of systems and provides a rigorous mathematical basis for
the analysis of connected elements, enabling aspects of aggregate
performance of networked systems to be rapidly calculated [10].
Network models are being increasingly used to improve our un-
derstanding of: social systems [2,26,3], neural networks [35,36,6],
biological networks [34] and computer science systems [37],
amongst others. Studies applying network theory to real-world
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systems, have recently turned from the analysis of social and
biological networks, where space is not traditionally a governing
factor, to the analysis of infrastructure systems, which can be
distributed over vast geographic regions [14,16,28]. In the case of
infrastructure systems, it has been assumed that because many of
these networks have been shown to be topologically resilient to a
random hazard (e.g. a reliability failure of individual components)
they are also resilient to spatially dispersed random hazards (e.g.
snowstorm, windstorm). However, Wilkinson et al. [38] analysed
the impacts of the Eyjafjallajokull volcano to the European Air
Traffic Network and found that this network showed a surprising
vulnerability to this hazard, contradicting its assumed topological
hazard tolerance. They found that this vulnerability was due to a
combination of its topological characteristics and geographical
distribution of airports in the network, which is not accounted for
in traditional network theory studies, which only consider net-
work topology. The little research that has analysed real-world
spatial networks (e.g. infrastructure systems) focuses mainly on
characterising the topology of the system, while the spatial ele-
ment of the same network receives less attention - if not neglected
entirely [5]. There are a few studies that have considered the
“spatial” resilience of interdependent gas and electrical networks
[29,31] or the resilience of China air traffic network [24,30], for
example. However, all of these studies have assessed specific real-
world applications of spatial resilience and have not considered
the overarching, or inherent, resilience of spatial networks in
general.

In this paper, we aim to give an assessment of the spatial
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hazard tolerance of a range of complex networks, in a similar
manner to the study by Albert et al. [1] who considered topological
resilience. To achieve this, we provide a robust framework that can
quantify the reliability of a complex system to a range of spatial
hazards. Unlike previous spatial hazard studies, we do no focus
solely on one real-world system but instead generate a range of
synthetic networks (termed ‘benchmark networks’) to use in our
resiliency testing. However, we do show that these benchmark
networks are characteristic of real-world systems and relate our
findings from the ‘benchmark networks’ to these real-world sys-
tems. We consider three classes of relational network model
(random, scale-free and exponential networks) which are com-
bined with two different spatial nodal configurations and assess
their hazard tolerance to two different locations of a ‘growing’
spatial hazard.

The rest of the paper is structured as follows: in Section 2, the
paper considers the spatial nodal configuration of the ‘benchmark
networks’ and Section 3 considers their network class (i.e. topol-
ogy). Section 4 develops the spatial hazard models to be used to in
our analysis, to which our ‘benchmark networks’ are then sub-
jected in Section 5. Finally, Section 6 provides conclusions and
ideas for future research.

2. Nodal configuration

There has been very little research into the nodal locations of
real-world networks. The majority of previous research has in-
vestigated pre-existing real-world networks and has therefore
used the actual nodal locations [17], or has used purely topological
models [17,18,7]. The location of nodes within a real-world net-
work is a very complex problem. In the case of real world systems,
nodes may represent cities, regions within cities or individual in-
frastructure components. Furthermore these systems are dynamic,
evolving over time in response to a myriad of drivers such as de-
mographic shifts, technological advancement and availability of
resources. Therefore, we generate a range of generic nodal loca-
tions and use these to form spatial ‘benchmark networks’ for
testing resiliency. These benchmarks capture the overall distribu-
tion of nodes in geographical networks, but not necessarily the
small scale local areas of high density nodes (e.g. the model will
capture the spread of airports over a continent, but not necessarily
the high density of airports clustered around a population centre).
This allows us to draw conclusions on the overall hazard tolerance
of spatial networks, in a similar manner to traditional topological
hazard assessments.

In this paper, we simulate two different spatial nodal layouts
and contain them within a ‘spatial boundary’, outside which no
nodes are allowed to form. In the case of a real-world network,
this spatial boundary could represent the extent of a land
boundary or air space in the case of an air traffic network. We are
considering generic spatial layouts in this paper, rather than si-
mulating one area in particular, and have therefore chosen to
enclose the networks in a circular boundary. The two different
spatial nodal layouts used in this paper are:

® Uniform with distance (Fig. 1(a)) — the number of nodes increases
linearly with distance away from the geographic centre of the
network

® Uniform with area (Fig. 1(b)) — the nodes are spread evenly over
the network.

The spatial distributions for the two nodal layouts are shown in
Fig. 1. These distributions plot the number of nodes against dis-
tance from the geographic centre. From this figure, it can be seen
that the uniform with distance configuration shows a linear

relationship between the proportion of nodes and the distance
from geographical centre, whereas the uniform with area config-
uration exhibits a quadratic relationship.

3. Network classes and models

Relational network models do not include a spatial component,
therefore we modify the traditional generation algorithms of
random, scale-free and exponential networks to generate a range
of spatial networks. All of the generated networks used in this
paper have 500 nodes and approximately 3200 links. We have
chosen to generate scale-free and exponential networks as they
have been shown to capture the real-world characteristics of many
infrastructure systems (for example: [32,39]). Whilst, random
networks are often used in tests of network robustness to de-
termine if a more structured network is resilient or vulnerable to
the applied hazard, due to the homogeneous nature [22,25].

3.1. Random network

In this paper, we generate the random networks using the al-
gorithm of Erdos and Renyi [13]. In this generation algorithm, each
pair of nodes is considered in turn and a connection (link) is made
between them based upon a value of linking probability (the
higher this value the more likely it is that a link will be generated).
If the linking probability is equal to 1, then the network will be
saturated (i.e. it will have the maximum possible number of links)
and if this value equals 0 there will be no links in the network. We
do not modify this generation algorithm to take into account the
spatial distance between nodes as we are not seeking to create the
most efficient network possible (i.e. we are not seeking to mini-
mise, or maximise, the distances between pairs of nodes). In this
paper, we are using the random network as a benchmark for tests
of resilience for the other two more sophisticated network classes
and therefore choose the linking probability to result in approxi-
mately the same number of links as these two networks (around
0.025, which results in a network with approximately 3200 links).
The degree distributions for the generated networks can be seen in
Fig. 2(a) and the associated spatial degree distributions are shown
in Fig. 2(b).

3.2. Scale-free network

The scale-free network was first identified and developed by
Barabasi and Albert [4] and is based upon the ideas of growth and
preferential attachment [5]. These networks are formed by starting
with an initial number of isolated nodes, mg, which is usually a
small percentage of the total number of nodes in the network.
New nodes are then added to the network at each ‘time step’ (i.e.
‘growing’ the network) until the total number of nodes in the
network is reached. These added nodes have between 1 and mg
links attached to them and connect to the existing nodes in the
network based upon the idea of ‘preferential attachment’. The
probability of attaching to each existing node is calculated based
upon its degree, with the nodes with a high degree being more
likely to ‘attract’ a link from the new node (i.e. the rich get richer).
It is this ‘preferential attachment’ rule which results in a few high
degree nodes and many small degree nodes in the network. If a
spatial layout of the network as nodes are introduced into the
network those nodes that are introduced early in the process have
more chance to ‘attract’ links from other nodes compared to nodes
introduced later to the network and are therefore more likely to
have a higher degree than those introduce late, which in turn has a
significant impact upon their spatial hazard tolerance [11].

Therefore we study three methods of choosing the introduction
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