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a b s t r a c t

We have previously developed a finite element simulator, ichannel, to simulate ion transport through
three-dimensional ion channel systems via solving the Poisson–Nernst–Planck equations (PNP) and Size-
modified Poisson–Nernst–Planck equations (SMPNP), and succeeded in simulating some ion channel
systems. However, the iterative solution between the coupled Poisson equation and the Nernst–Planck
equations has difficulty converging for some large systems. One reason we found is that the NP equations
are advection-dominated diffusion equations, which causes troubles in the usual FE solution. The
stabilized schemes have been applied to compute fluids flow in various research fields. However, they
have not been studied in the simulation of ion transport through three-dimensional models based on
experimentally determined ion channel structures. In this paper, two stabilized techniques, the SUPG and
the Pseudo Residual-Free Bubble function (PRFB) are introduced to enhance the numerical robustness and
convergence performance of the finite element algorithm in ichannel. The conductances of the voltage
dependent anion channel (VDAC) and the anthrax toxin protective antigen pore (PA) are simulated to
validate the stabilization techniques. Those two stabilized schemes give reasonable results for the two
proteins, with decent agreement with both experimental data and Brownian dynamics (BD) simulations.
For a variety of numerical tests, it is found that the simulator effectively avoids previous numerical
instability after introducing the stabilization methods. Comparison based on our test data set between
the two stabilized schemes indicates both SUPG and PRFB have similar performance (the latter is slightly
more accurate and stable), while SUPG is relatively more convenient to implement.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ion channels are essential for the proper function of cells and
organisms [1]. Theoretical treatments of ion transport through
channel proteins may be broadly classified as kinetic models,
electrodiffusion models, and statistical mechanics based discrete
model. Themost commonly used theoretical techniques in the field
are stochastic models, molecular dynamics (MD) [2] and Brown-
ian dynamics (BD) [3–5]. Classical MD utilizes empirical interac-
tion potentials or force fields calibrated by macroscopic data to
describe molecular motions and is able to handle an entire ion
channel, including ions, counterions, solvent, lipids and proteins.
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Unfortunately, there are two issues for commonly used MDmeth-
ods: one issue is to develop appropriate force fields for the ionic
mixtures and concentrated solutions in and near channels; the
other issue is that, with MD, it is computationally costly and,
in some situations, infeasible to reach the time scale of ion per-
meation across most channel membranes and to determine ion
conductance. Compared to Brownian dynamics (BD) and molec-
ular dynamics (MD), the continuum models, usually using a
coarse approximation of continuum dielectric media and a static
representation of proteins, have advantages of reducing com-
putational cost and the ease of applying certain boundary con-
ditions. A widely used electrodiffusion model is based on the
Poisson–Nernst–Planck equations [6,7], in which ions are not
treated as microscopic discrete entities but as continuous charge
densities. Therefore, the PNP theory describes both the solvent
and ions as continuous distributions. Consequently, there are lim-
itations associated with the PNP model. It is well-known that
the PNP theory neglects the finite volume effect of ion particles.
Moreover, non-electrostatic interactions between ions are not ac-
counted in the PNPmodel. PNP theory has previously been applied
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to the study of ion transport in electrochemical liquid junction
systems [8] and electron transport in semiconductor devices [9],
as well as ion permeation through biological membrane chan-
nels [10–12]. A number of numerical algorithms, including fi-
nite difference [13–16], finite element [17–19,12,20], spectral ele-
ment [21] and finite volumemethods [22], have beenutilized in the
past two decades for solving the PNP equations. Although the finite
difference (FD) method is straightforward to implement, applying
this method to systems that have curved boundaries and compli-
cated geometries is challenging. If the surface and volumemesh of
proteins are available, the finite element method has the advan-
tage of naturally handling complex geometries, such as the molec-
ular surfaces of DNA molecules and ion channels. Moreover, the
finite element method has a solid mathematical foundation, and
there are numerous user-friendly andmature FE software packages
available for usage.We recently published one of the firstworks us-
ing FEM to solve the 3DPNP equations for ion channel systems [12].
However, there are still numerical challenges for solving PNP equa-
tions for simulating ion transport through large ion channel sys-
tems. In [12], we found some existing difficulties to simulate the
biggest ion channel listed in the article [23]. Our recent analysis
and studies indicate that if there is a strong electrostatic potential
(which usually occurs in biomolecular systems), the NP equations
have a large drift term (advection-dominated), which may result
in numerical divergence with the standard finite element method.

In this paper, stabilized finite element methods are introduced
to enhance the robustness of the solver. Stabilized finite element
methods are formed by adding variational terms into the stan-
dard Galerkin method, which are mesh-dependent, consistent and
numerically stabilizing. The Streamline-Upwind/Petrov–Galerkin
(SUPG) method, introduced by Brooks and Hughes for advection–
diffusion equations and incompressible Navier–Stokes equations
[24], can be considered as the first successful stabilization tech-
nique to prevent oscillations in advection-dominated problems in
the FEM. The main steps are as follows: (1) introduce artificial
diffusion in streamline direction only, (2) interpret this as a modi-
fication of the test function of the advection terms, (3) enforce con-
sistency so that thismodified test function is applied to all terms of
theweak form. The SUPGmethod has been applied to various other
problems, e.g., coupled multidimensional advective–diffusive sys-
tems [25], first-order linear hyperbolic systems [26] or first-order
hyperbolic systems of conservation laws [27]. Because of its struc-
tural simplicity, generality and the quality of numerical solutions,
the SUPG method has attracted considerable attention over the
past two decades and many theoretical and computational re-
sults have been published. The major part of the theoretical anal-
ysis of the SUPG has been done by Johnson [26]. Motivated from
mathematical analysis, another type of stabilization scheme, the
Galerkin/Least-Squares (GLS) method, has been established. The
GLS method is similar to the SUPG method in certain aspects. For
linear interpolation functions, the two become identical. In the
GLS method, least-squares forms of the residuals are added to the
Galerkinmethod, enhancing stability of the Galerkinmethodwith-
out giving up consistency or degrading accuracy [28].

Another approach, the Residual-Free Bubbles (RFB) method
[29–32], which is based on enriching the finite element space,
has been recently introduced to solve the advection-dominated
elliptic problems. The bubble functions are defined to be as rich
as possible within an element. In other words, these functions are
assumed to satisfy strongly the PDE in the interior of the element,
up to the contribution of the piecewise polynomial functions.
In practice, unless in very special situations (one-dimensional
problems, limit cases, etc.), they require the actual solution of
PDE problems (the bubble problems) in each element. An intuitive
description of the RFB method is to find a cheap way to compute
approximately the solution of the bubble problem in each element.

This provides, as a consequence, an effective way to calculate
good approximations for the optimal values of the stabilization
parameters. The Pseudo Residual-Free Bubble (PRFB) method aims
to get sub-grid nodes to approximate bubble functions cheaply
using piecewise linear functions. The PRFBmethod also fits into the
general stabilization method framework as the SUPG method, but
differs in the stabilizing parameters and the operators on unknown
variables and testing functions. For the stabilizing parameters of
the PRFB method we refer to recent studies [32–36] which are
restricted in one-dimensional and two-dimensional cases. Since
our numerical experiments are based on a 3D ion channel, we
have done derivations on the stabilizing parameters under specific
choices of subgrid.

The SUPG, GLS and PRFB stabilizations are most frequently
applied to fluid problems, such as Stokes and incompressible
Navier–Stokes equations [37–40,32]. The SUPG scheme was used
to simulate ion flow through a nanopore [41], in which, a ‘‘Fast
SUPG’’ scheme was presented for SMPNP equations because the
standard SUPG is expensive to evaluate for the SMPNP equations.
In this work, we will try to study and implement two stabilized fi-
nite element algorithms for solving the 3D PNP/SMPNP equations
formodels based on experimentally determined ion channel struc-
tures, which, to our knowledge, have not been applied in compu-
tational biology.

In this paper, we describe a robust parallel FEM solver for both
PNP and SMPNP equations for the simulation of ion transport
through large ion channel systems, which can handle irregular
geometries and complex boundary conditions. We found that the
SUPG and PRFB schemes have good performance for solving PNP
and SMPNP equations, even if there exists strong electrostatic
potential around the molecule.

This paper is organized as follows. The PNP model and the
stabilized FE schemes are introduced in the section Numerical
Methods. First, we briefly review the 3D ion channel model and
the PNP equations. Then, we present the robust stabilized finite
element algorithms for solving the coupled nonlinear discretized
equations. In the section Numerical experiments, we present some
numerical results and assess the performance of our ion channel
simulator in ion transport simulations. The solver is applied to
VDAC and PA ion channel, and the simulation results are compared
with our previous results [12]. The paper ends with the section
Summary.

2. Numerical methods

2.1. The PNP and SMPNP equations

The PNP model combines the Nernst–Planck theory describing
electrodiffusion of ions in the transmembrane channel with
the Poisson theory describing the electrostatic potential whose
gradient serves as a driving force of the ion motion. Consider an
open domain Ω ∈ R3, Ω = Ωm ∪ Ω s, where Ωm represents
the protein and membrane region and Ωs represents the solvent
reservoirs and the channel region. The PNP equations couple the
Nernst–Planck equations

∂ci
∂t

= ∇ · Di(∇ci + βqici∇φ), x ∈ Ωs, 1 ≤ i ≤ N, (1)

and the electrostatic Poisson equation:

− ∇ · (ϵ∇φ) = λ


i

qici + ρ f , x ∈ Ω, (2)

where ci(x, t) is the concentration of the ith ion species carrying
charge qi. Di is the spatial-dependent diffusion coefficient, and φ is
the electrostatic potential. N is the number of diffusive ion species
in the solution that are considered in the system. The constant β =
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