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A B S T R A C T

Cascading failures seriously threat the reliability/availability of power transmission networks. In fact, although
rare, their consequences may be catastrophic, including large-scale blackouts affecting the economics and the
social safety of entire regions. In this context, the quantification of the probability of occurrence of these events,
as a consequence of the operating and environmental uncertain conditions, represents a fundamental task. To
this aim, the classical simulation-based Monte Carlo (MC) approaches may be impractical, due to the fact that
(i) power networks typically have very large reliabilities, so that cascading failures are rare events and (ii) very
large computational expenses are required for the resolution of the cascading failure dynamics of real grids. In
this work we originally propose to resort to two MC variance reduction techniques based on metamodeling for a
fast approximation of the probability of occurrence of cascading failures leading to power losses. A new
algorithm for properly initializing the variance reduction methods is also proposed, which is based on a smart
Latin Hypercube search of the events of interest in the space of the uncertain inputs. The combined methods are
demonstrated with reference to the realistic case study of a modified RTS 96 power transmission network of
literature.

1. Introduction

In recent years, power outages and interruptions have been
occurring in many countries, with large consequences. For example,
the major of Northeast America in 2003 caused a 6 billion dollars
economic loss for the region [1,2] and several other social conse-
quences of power interruptions, e.g. related to transportation, food
storage and credit card operations, just to mention a few of them [3].

Blackouts are the outcomes of cascades of failures, initiated, in turn,
by the failures of a limited set of components, due, for example, to
overloads generated by excessive load demands, loss of generation,
human errors in network operation, or to external events, e.g. caused
by extreme environmental conditions, such as lightning, icing, floods,
wind storms, earthquakes, etc. Subsequently, other components fail
and are disconnected to avoid further severe damage.

Traditionally, a power transmission network is designed and
operated so that a single component disconnection cannot give rise
to cascading failures (N − 1 criterion [4]); however, rare combinations
of circumstances, uncommon events or inadequate countermeasures
may result in further line disconnections, eventually leading to failure
propagation. Extremely severe natural events may even directly fail the

components of the network.
In this work, we propose to evaluate the reliability of a power

transmission network operating under uncertain environmental con-
ditions. Quantitatively, the problem amounts to computing the prob-
ability that an initial, limited outage yields a cascading failure with final
load shedding larger than zero (or any other predefined threshold).

Mathematically, the problem can be framed as follows. We consider
the model  of the system response Y to the vector of uncertain inputs
x:

Y x= ( ) (1)

where x is a n-dimensional random vector x x x x={ , ,…, }n1 2 , with
probability density function (pdf) xf ( ). The model  x( ) is often called
the system performance function. The system failure is usually defined
as the event  x{ ( ) > 0}, where the set of values x x: ( )=0 is defined as
limit state and x x: ( ) > 0 is called failure domain. Then, the system
failure probability is:

P P x= [ ( ) > 0]f (2)

In the present work, the performance function  x( ) is given by the
combination of the network line failure model and the cascading failure
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model, whose output is the final load shedding, as it will further
detailed in Section 4. Correspondingly, the failure probability Pf is the
probability that an outage yields a cascading failure event leading to a
final load shedding larger than zero.

Simulation-based methods, i.e. Monte Carlo (MC) computational
schemes, are the most widely used for estimating the probability of
failure Pf . In the crude MC scheme, a large number (N )MC of input
vector values x is sampled from the joint pdf xf ( ) and the performance
function  x( ) is evaluated in correspondence of the available NMC input
points. A failure indicator variable is defined as:
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The sample mean of the values of the indicator variable obtained is
the MC-based estimator of the failure probability:

∑P P
N

I x≈ ˆ = 1 ( )f f
MC i

N

F i
=1

MC

(4)

The accuracy of the estimates can be expressed in terms of the
coefficient of variation (δ), defined as the ratio of the sample standard
deviation and P̂f [1]:

δ
P

P N
ˆ =

1− ˆ
ˆMC

f

f MC (5)

Two difficulties may arise: on one hand, power networks have very
large reliabilities and cascading failures are rare events; on the other
hand, the computational expenses needed for the resolution of the
complex models of power flows within the network become soon
prohibitive, as the accuracy and level of realistic details to be included
in the analysis increase.

For a computationally expensive performance function  x( ), an
accurate estimation of Pf becomes prohibitively time consuming when
the failure probability is small. For example, if Pf is of the order of 10 p− ,
NMC should be at least 10p+2 to achieve a coefficient of variation δ̂MC of
the order of 10%.

In order to overcome this issue, many methods have been proposed
in literature. In structural reliability analysis, for example, First or
Second Order Reliability Methods (FORM or SORM) are commonly
used [5–9]. These methods approximate the limit state function
 x( )=0 around the so-called Most Probable Failure Point (MPFP) or
“design point” by a Taylor series expansion, which allows fast analytic
computations of the failure probabilities. However, these methods
suffer from a major drawback, i.e. they require the numerical computa-
tion of the gradient and the Hessian of the limit state function, thus
potentially leading to large and not easily quantifiable estimation
errors.

Other approaches increase the efficiency of the MC estimators by
resorting to so-called variance reduction techniques.

Probably, the most popular variance reduction technique is that of
importance sampling (IS), which has been successfully applied in many
fields of research. In IS, a suitable importance density alternative to the
original input pdf xf ( ) is chosen so as to favor the MC samples to be
near the failure region, thus forcing the rare failure event to occur more
often. The major difficulty of the method lies in the a priori definition of
a suitable importance density. In order to overcome this issue, a
common approach in structural reliability is that of choosing the
importance density as a joint Gaussian distribution centered around
some properly identified design points [10], such as, for example, the
MPFP(s) identified by a FORM (or SORM) in the isoprobabilistically
transformed standard input space [9,10]: by doing so, it is possible to
refine the result of the FORM (SORM) by an IS procedure, which picks
the samples in the vicinity of the failure region. Another popular
strategy is that of iteratively adapting the importance density by
exploiting the model evaluations gathered in previous estimation steps

or, in other words, to use some adaptive pre-samples [11,12]: in order
to gain this prior knowledge, usually, many performance function
evaluations are required to find samples falling in the failure regions, in
particular when the failure probability to be estimated is very low. To
overcome this problem, [13] introduced a method based on Markov
Chain Monte Carlo (MCMC), based on a modified Metropolis-Hastings
algorithm (or similar schemes), to adaptively approximate the optimal
importance density. In general, however, the major drawback of IS-
based approaches is that for complex, high dimensional problems, it is
often difficult, if not impossible, to build efficient importance densities,
as observed in [14] and also demonstrated in [15].

One of the most successful variance reduction alternative technique
is subset simulation (SS) [16,17], which does not suffer from this issue.
The method is based on a representation of the failure probability as
the product of conditional probabilities of some properly chosen
“intermediate”, more frequent failure events, the estimation of each
of which only requires few performance function evaluations. The
conditional probabilities are, then, sampled by means of a MCMC
method. However, the total number of evaluations required remains
too large in many applications requiring long-running computer codes
[18], so that the failure probability estimation may still be computa-
tionally prohibitive. Moreover, the method's efficiency stems from i) a
smart definition of the “intermediate” failure events, which is not an
easy task, especially for complex models with little or no availability of
prior information, and ii) the crucial choice of the proposal pdfs, which
is, in general, significantly dependent on the problem under analysis,
thus limiting somewhat the flexibility of the approach [16].

Another important class of variance reduction methods successfully
addressing the problem of large dimensionality is that based on line
sampling (LS) [19], which uses lines, instead of points, to probe the
failure domain. The method stems from the determination of an
important direction pointing towards the failure domain, with respect
to which the sampling lines are then defined, thus giving rise to
conditional, one-dimensional problems, simpler to solve. However,
similarly to SS, the method still requires too many performance
function evaluations in many applications. Moreover, the efficient
determination of the principal direction is still an open issue, which
significantly depends on the application under analysis [19].

Recently, effective strategies for further reducing the computational
efforts required by small failure probability estimation have been
proposed, which use a surrogate model (metamodel) for a fast
approximation of the performance function within a sampling based
Monte Carlo scheme. To run a metamodel is, in fact, orders of
magnitude faster than the original model, thus potentially allowing
significant computational savings. In this context, the Adaptive Kriging
MC Sampling (AKMCS) algorithm [20] and its improved version
Adaptive Kriging Importance Sampling (AKIS) [21,22] have been
recently proposed, where a Kriging-based metamodel is coupled to a
MC-based strategy (crude, in AKMCS, and IS, in AKIS), within an
adaptive learning scheme which automatically refines the metamodel
to a desired level of precision. These methods have been demonstrated
efficient in estimating small failure probabilities in different engineer-
ing fields, from structural reliability [20–22] to probabilistic risk
analysis of nuclear installations [23–26]. However, the most attractive
feature of this class of methods, which stimulated their application in
this work, is the fact that they require very little calibration when
applied to different problems, demonstrating high levels of adaptability
and flexibility, as opposed to most of the methods illustrated above. A
further motivation for the use of Kriging in the present context lies in
the successful demonstration of its applicability for approximating
step-wise discontinuous functions given by [24], provided that proper
care is taken in the construction of the metamodel DoE.

Thus, in the present work, we propose to exploit this feature for the
analysis of the reliability of power networks subject to cascading
failures, a context very different from that of structural reliability, for
which these methods were first introduced. Yet, in order to be able to
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