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a b s t r a c t

Reliability testing is typically used in demand-based systems (such as protection systems) to derive a
confidence bound for a specific operational profile. To be realistic, the number of tests for each class of
demand should be proportional to the demand frequency of the class. In practice, however, the actual
operational profile may differ from that used during testing. This paper provides a means for estimating
the confidence bound when the test profile differs from the profile used in actual operation. Based on
this analysis the paper examines what bound can be claimed for different types of profile uncertainty and
options for dealing with this uncertainty. We also show that the same conservative bound estimation
equations can be applied to cases where different measures of software test coverage and operational
profile are used.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nuclear protection systems are designed to protect against a
range of safety-related plant incidents (known as postulated in-
itiating events or PIE). A PIE can affect one or more plant para-
meters (such as temperature, pressure and neutron flux). These
plant parameters are monitored by the protection system and the
reactor is tripped if the plant parameters go outside the safe op-
erational envelope.

In the UK, a probabilistic safety assessment (PSA) is required to
justify the safety of nuclear plant. As part of this process, the
performance of the protection system must be quantified in terms
of probability of failure on demand, pfd, where the demand can be
any of the PIE events. There are accepted means for estimating the
pfd arising from hardware failures, but we also need to include an
estimate for the pfd of the software if the protection system is
computer-based. Statistical reliability testing [1,2] is one means of
estimating the software pfd of a demand-based system to some
confidence bound, and it is recommended in functional safety
standards such as IEC 61508 [3]. For example, reliability testing
was performed as part of the independent confidence building
programme required by the UK Office for Nuclear Regulation
(ONR) for the computer-based primary protection system (PPS) at
Sizewell B nuclear power station [4]. The PPS was subjected to

5000 simulated demands to support a pfd claim of 10�3. Reliability
testing is also planned for new nuclear power stations to be in-
stalled in the UK [5].

The confidence bound derived from statistical reliability testing
is based on a number of modelling assumptions. The stated as-
sumptions in IEC 61508 [3] for the low demand rate case are:

1. The test data distribution is equal to the distribution of de-
mands during on-line operation.

2. Test runs are statistically independent from each other, with
respect to the cause of a failure.

3. An adequate mechanism exists to detect any failures which may
occur.

4. Number of test cases >N 100.
5. No failure occurs during the N test cases.

The second assumption can be met in the protection system
context as the protection system is normally reset after a reactor
trip (so the software always starts from the same initial state).

The third assumption requires a perfect “oracle” that de-
termines if a failure has occurred. The required response is rela-
tively easy to determine for PIE events in a nuclear plant since
each simulated PIE is expected to result in a reactor trip.

The last two assumptions will also be met in a nuclear pro-
tection context as many thousands of tests are needed for the
required pfd and the software has to be corrected and retested
from scratch if a failure is observed.

To satisfy assumption 1, the number of tests for each class of
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demand (i.e. for each PIE) should be proportional to the demand
frequency of that class during operation, so the confidence bound
estimate cannot be used if the test and operational profiles differ.

This paper presents a means for estimating the confidence
bound when the test profile differs from the profile used in actual
operation. Based on this analysis, the paper examines what bound
can be claimed for different types of profile uncertainty and the
options for dealing with this uncertainty.

We also show that the same conservative bound equations can
be applied in contexts where the software reliability bound and
input profile are characterised in different ways.

2. Problem statement

If a system is subjected to N test demands without failure [1],
we can follow the approach suggested by Neyman and Pearson [6],
Neyman [7], and Clopper and Pearson [8] as it is presented by
Wang [9] and identify an upper confidence bound, q, on the
probability of failure on demand Q to a confidence α−1 as the
largest value such that the hypothesis “ =H Q q0: ” is not rejected
against the alternative “ <H Q q1: ” at the significance level α.

Thus, q must satisfy the following equation:

α( − ) = ( )q1 1N

However, it is often the case that the system handles different
classes of demand, e.g. a protection system that protects against
different PIE events. These demand classes are assumed to be
disjoint, i.e. only a single demand can occur at any point in time.

Testing over a series of classes can be characterised by a test
plan vector:

= { … } ( )n n nn , , , 2m1 2

where m is a number of demand classes, ni is the number of tests
for demand class i, and the total number of tests is:

∑=
( )=

N n
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The distribution of tests over the demand classes can be char-
acterised by a test distribution profile vector:

^ = {^ ^ … ^ } ( )p p pp , , , 4m1 2

where ^ = = …p n N i m/ , 1i i

When this multiple demand class system is used in operation it
will be subject to an operational profile:

= { … } ( )p p pp , , , 5m1 2

Ideally the operational and test profile distributions will match so
that = ^p p. However, in practice the operational profile p will vary
if the system is used in different environments or there is un-
certainty in the likelihood of different external events. So we need
some means to determine a bound qs to some confidence α( − )1
for a different operational profile p given a prior set of tests n.

3. Problem formulation

For some (unknown) vector of demand class pfds

= { … } ( )q q qq , , , 6m1 2

the likelihood of observing no failures with test plan n is:

∏( ) = ( − ) ( ≤ ≤ )
( )=

P q qq n, 1 , 0 1
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The α( − )1 confidence area for all possible pfd vectors, ′q , is

α α( ) = { ′ ( ′ ) ≥ } ( )D Pn q q n, : , 8

For an arbitrary vector of demand class pfds q and operational
profile p, the system pfd, QS, is simply the weighted average of the
vector of q values, i.e.

∑( ) = · =
( )=

Q q pq p q p,
9
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The confidence area (8) constrains the set of permissable q vectors
and induces a confidence interval for QS with the upper bound:

= ( )
( )α∈ ( )

q Q q pmax ,
10s D

s
q n,

We therefore need a method for solving (10) for an arbitrary de-
mand profile p.

It is straightforward to solve (10) numerically for any profile p
and test vector n. However a numerical analysis does not permit
any general conclusions to be drawn about the impact of changes
in the operational profile p.

With an analytic derivation of the confidence bound, we can
model the impact of a mismatch between the test profile and the
actual demand profile and identify general strategies for designing
test profiles that reduce the sensitivity of the bound to un-
certainties in the operational profile.

The next section describes the approach we developed to de-
rive an analytic solution for the confidence bound.

4. Solution approach

In Appendix A we use Lagrangian multipliers to identify the
stationary points that represent the potential solutions to (10) but
the solution space is complex. There are −2 1m stationary points
and the optimal point depends on the specific values used in p and
n. As a result, there is no simple analytic solution that can be
applied to all operational profiles. So we developed an alternative
approach for obtaining an analytic solution by deriving a con-
servative approximation for (10) that makes the problem easier to
solve.

In this reformulation, the likelihood (7) is approximated as:

∏˜( ) = ( − ) ≤ ≤
( )=

P q n qq n, exp , 0 1
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It is a standard result [10] that

( − ) ≥ ( − ) ( )q n qexp 1 12i i i
ni

Thus

α( ) ≥ ( )P q n, 13

implies,

α˜( ) ≥ ( )P q n, 14

Therefore, the approximated confidence area

α α˜ ( ) = { ′ ˜( ′ ) ≥ } ( )D Pn q q n, : , 15

is a superset of the exact confidence area, i.e.

α α˜ ( ) ⊇ ( ) ( )D Dn n, , 16

As a result, the approximate solution will always be conservative
relative to the exact solution, i.e. for a given α, n, p

˜ ≥ ( )q q 17s s

where
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