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A B S T R A C T

This paper proposes to analyze the degradation of lithium-ion batteries with the sequentially observed
discharging profiles. A general state-space model is developed in which the observation model is used to
approximate the discharging profile of each cycle, the corresponding parameter vector is treated as the hidden
state, and the state-transition model is used to track the evolution of the parameter vector as the battery ages.
The EM and EKF algorithms are adopted to estimate and update the model parameters and states jointly. Based
on this model, we construct prediction on the end of discharge times for unobserved cycles and the remaining
useful cycles before the battery failure. The effectiveness of the proposed model is demonstrated using a real
lithium-ion battery degradation data set.

1. Introduction

Lithium-ion (Li-ion) batteries have undergone rapid development
since they were commercialized in 1991. Nowadays, due to their great
advantages, they have been the most promising rechargeable batteries
and applied as the main power sources in more and more fields, from
the daily used mobile device industry, to the rising electric vehicle (EV)
industry, even to the crucial marine and space system [17]. However,
regardless of the type and design of Li-ion batteries, the degradation
caused by aging occurs throughout life in every condition [1]. Two
principle phenomena to identify the degradation are capacity fade and
impedance raise. Capacity fade means that the maximal usable energy
which can be stored in Li-ion batteries becomes less and less as the
charge-discharge cycle increases. Impedance raise determines the
reduction of the maximum of available power. As batteries degrade,
they will be unable to supply sufficient energy or power for systems
finally. This kind of functional failures announce the end of life for
batteries [21].

In order to prevent Li-ion battery failures from occurring, and to
optimize battery maintenance and replacement schedule, developing a
Prognostics and Health Management (PHM) approach for Li-ion
batteries, with emphasis on detecting underlying degradation and
predicting remaining useful cycle (RUC), achieves more and more
attention [21]. The common performance data for Li-ion batteries
include voltage, current, impedance and capacity. Among them, both
impedance and capacity have been widely used for degradation
prognostics, because they are inherent battery properties and it is easy
to identify and extract degradation features from their measurements.

For example, Saha et al. [13] applied the proposed Bayesian learning
framework on Li-ion battery prognostics based on internal impedance
measurements. Zheng and Fang [22] developed a novel method using
unscented Kalman filter (UKF) with relevance vector regression to
predict the RUC. There are some other noted algorithms proposed for
capacity or impedance degradation, such as artificial neutral network
[9], relevance vector machine [18], and so on [5,20].

If given accurate impedance or capacity measurements, the above
approaches are easily to implement and can present good prediction
accuracy. The problem lies in that both impedance and capacity of Li-
ion batteries cannot be measured simply and efficiently. In literature,
the most widely used experimental technique for impedance measure-
ment is electrochemical impedance spectroscopy (EIS) test [15]. This
test is time-consuming and cost-ineffective to take regularly. It needs
be conducted with bulk equipment and has strict requirements on
experimental environment [20]. The battery capacity can be estimated
by the Coulomb counting method which integrates discharging current
from a fully charged state to a fully discharged state [21]. However, the
capacity can only be obtained at the end of entire discharge process.
Moreover, the measured capacity of each discharge cycle depends on
the cut-off voltage greatly.

Different with impedance and capacity measurements, current and
voltage can be easily obtained by the sensor technology in real
applications. There have been some attempts to use the charging/
discharging profiles for Li-ion battery degradation investigation. Some
authors propose new capacity estimation methods based on the
collected charging/discharging profiles. For example, Lu et al. [11]
proposed using the four geometric features extracted from charging/
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discharging profiles to estimate battery capacity. Tao et al. [16]
developed an approach named dynamic spatial time warping to
recognize the similarities of current or voltage curves and further
estimate battery capacity. These new capacity estimation methods can
estimate the state of health (SoH), but cannot predict the RUC. Some
authors try to extract features from charging/discharging profiles, and
use these features as the health indicators to conduct the SoH
estimation directly. For example, Widodo [19] introduced the sample
entropy of discharging profiles into Li-ion battery degradation prog-
nostics. Liu et al. [10] proposed a general framework for the health
indicator extraction and optimization. However, to better utilize these
extracted features, accurate capacity measurements should be used for
model training or feature transformation before on-line application.
Other authors rely on the equivalent circuit model (ECM) and derive
circuit components from discharging profiles for the SoH estimations.
For example, Jonghoon Kim once developed a framework for state of
charge (SoC) and SoH joint estimation with the discharging profiles
based on a designed ECM model [7,8]. Nevertheless, these ECM based
methods can only provide the SoH estimation. The RUC prediction can
not be achieved.

In this paper, we propose to develop a data-driven method for Li-
ion battery degradation prognostics with the sequentially observed
discharging profiles. On the one hand, we do not choose to extract
features from the discharging profiles, because we think the dischar-
ging profile of a single cycle can be used to predict how long the battery
can be used and what is the current releasable capacity given any cut-
off voltage. These predictions are important for battery operation in a
single cycle. One the other hand, we don't stop at the SoH estimation,
but aim at the prediction of RUC. Based on the above considerations, a
state-space-based prognostics model is adopted in this paper. In more
detail, we build an observation model to depict the discharging profile
of each cycle and use a state-transition model to track the evolution of
the parameter vector in the observation model. With the orderly
observed discharging profiles, we adopt the expectation maximization
(EM) and extended Kalman filtering (EKF) algorithms to estimate the
model parameters and states jointly. About the (unobserved) future
cycles, we can predict the possible state-transition paths, simulate the
sequence of discharging profiles and finally construct prognostics on
end of discharging (EoD) time of each cycle and the RUC.

The remainder of this paper is organized as follows. Section 2
formulates a general state space model for Li-ion battery degradation.
Section 3 introduces the model estimation and updating via EM and
EKF algorithm. Section 4 presents the prognostics based on the well
learned state-space model. Section 5 uses a real case study to
demonstrate the effectiveness of the proposed model. Section 6
concludes the paper with discussions on future research directions.

2. A state-space model for Li-ion battery degradation

As presented in last section, we propose to take full use of the
observed discharging profiles (current and voltage) for Li-ion battery
degradation prognostics. In this section, we start with the simplest
battery operation case in which the battery is discharged in a steady
mode, i.e., loading current, ambient temperature, depth of discharge,
and etc. are held constant. In this way, we focus on extracting the
degradation pattern from the voltage profiles of different cycles.

As shown in Fig. 1(b), the output voltage in each cycle drops as the
discharge proceeds. This drop is mainly caused by the existence of
internal impedance and the motion of active lithium ions between the
battery electrodes along with electro-chemical reactions. This means
the path of voltage drop is not random. For a specific type of Li-ion
batteries, the voltage profiles would always present a similar decline
trend during discharging processes. Therefore, we can use the same
parametric family to characterize all of the observed voltages profiles.

Here, we denote Ui(t) as the measured voltage at time t in the ith

discharging cycle. The discharging profile can be expressed by the

observation model

θU t h t ν t t( ) = ( ; ) + ( ), ≥ 0,i i i (1)

where θh t( ; )i is the profile characterizing function with parameter
vector θi, and ν t( )i is the measurement error which is assumed to be
independent and identically distributed with ν t N σ( ) ∼ (0, )i

2 at any
time point t. For any cycle, once θi is known, the output voltage at any
time t can be estimated, and the entire discharging profile can be
depicted easily. Moreover, given a cut-off voltage ζi, both EoD time Ti
and releasable capacity Qi can be figured out.

As the charge-discharge cycle increases, the internal impedance will
increase, and the amount of active lithium ions and other electrode
materials will decrease. These changes make the voltage profiles of
different cycles present variation. In another word, this variation can be
used to identify the battery degradation. Based on the observation
model, the transition of θ i{ , = 1, 2, …}i decides the variation of their
discharging profiles and further stands for the battery degradation.
Thus, we treat the parameter vectors θ i{ , = 1, 2, …}i of different cycles
as a series of hidden states in battery degradation process. The state
transition model can be expressed as

θ θ ωf= ( ) + ,i i i i−1 (2)

where f (·)i is the state-transition function, and ωi is the transition noise
which is assumed to be zero mean multivariate Gaussian noise with
covariance Qi. Considering that the battery is operated in a steady
mode, we assume the state transition function f (·)i and covariance Qi
are the same for different i. For simplicity, we use the simplest linear
function

θ Bθ bf ( ) = +i i−1 −1 (3)

to clarify the following prognostics approach and parameter estimation
procedure.

Combining the observation model (1) and state-transition model
(2), a general state-space model for Li-ion battery degradation is
established. Different with conventional state-space models, the out-
puts are not simple value-type observations (e.g. impedance and
capacity) ([4,12]) but curve-type (voltage profiles). With this state
space model, we can use the observed voltages profiles to estimate their
hidden state θ, predict state evolution trajectory for future cycles,
depict the future discharging profiles and construct RUC prognostics
on a Li-ion battery.

Remark. The above model is built under the steady mode without
considering the effects of impacting factors like temperature and
discharging current, which can influence not only the discharging
profiles but also the degradation of Li-ion batteries. To incorporate the
effects caused by these impacting factors, we can treat them as known
inputs ui to our state-space model. Then the model can be written as

θ θ u ω θ uf U t h t ν t= ( , ) + , ( ) = ( ; , ) + ( ).i i i i i i i i i−1 (4)

As a consequence, the function f (·)i and h (·) could be more
complex, and the corresponding prognostics and inference could be
more difficult.

3. Model estimation and updating

In last section, we built a general state-space model which is
summarized as following,

θ Bθ b ω U h θ ν= + + = ( ) + ,i i i i i i−1 (5)

where U U t U t= [ ( ),…, ( )]i i i i im1 i is the observed voltage profile,
h θ θ θh t h t( ) = [ ( ; ),…, ( ; )]i i i im i1 i is the approximation of profile, θi is the
hidden degradation state, ωi and νi are the process and observation
noises which are both assumed to be zero mean multivariate Gaussian
noises with covariance Q and Iσ2 respectively.

Suppose we have observed the first k discharging voltage profiles.
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