Author's Accepted Manuscript

Multi-objective evacuation routing optimization for toxic cloud releases

Wen-mei Gai, Yun-feng Deng, Zhong-an Jiang, Jing Li, Yan Du

 PII:
 S0951-8320(16)30726-8

 DOI:
 http://dx.doi.org/10.1016/j.ress.2016.10.021

 Reference:
 RESS5668

To appear in: Reliability Engineering and System Safety

Received date:20 December 2015Revised date:17 October 2016Accepted date:30 October 2016

Cite this article as: Wen-mei Gai, Yun-feng Deng, Zhong-an Jiang, Jing Li and Yan Du, Multi-objective evacuation routing optimization for toxic cloud releases *Reliability Engineering and System Safety* http://dx.doi.org/10.1016/j.ress.2016.10.021

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Multi-objective evacuation routing optimization for toxic cloud releases

Wen-mei Gai^{a,b,c}, Yun-feng Deng^{b,*}, Zhong-an Jiang^a, Jing Li^c, Yan Du^a

^aSchool of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China ^bChinese Academy of Governance, Beijing 100089, China

^c Institute of Public Safety, China Academy of safety science and Technology, Beijing 100012, China

*corresponding author. Tel.: +86 15201451241.E-mail addresses: 15201451241@139.com

Abstract:

This paper develops a model for assessing the risks associated with the evacuation process in response to potential chemical accidents, based on which a multi-objective evacuation routing model for toxic cloud releases is proposed taking into account that the travel speed on each arc will be affected by disaster extension. The objectives of the evacuation routing model are to minimize travel time and individual evacuation risk along a path respectively. Two heuristic algorithms are proposed to solve the multi-objective evacuation routing model. Simulation results show the effectiveness and feasibility of the model and algorithms presented in this paper. And, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency route selection in other cases (fires, nuclear accidents).

Keywords: Risk analysis, Major chemical accidents, Evacuation planning, Multi-objective optimization, Routing Nomenclature

regional evacuation network
set of nodes, $V = \{v_1, v_2, \dots, v_n\}$
set of arcs, $E \subseteq V \times V$
origin node
destination node
number of the nodes
length of the arcs nodes v_i and v_j , where $(v_i, v_j) \in E$
travel speed on arc (v_i, v_j) under normal conditions
travel speed on arc (v_i, v_j) in the affected area at time t under conditions of
decrease parameters
time needed to travel through arc (v_i , v_j)
time when people reach node v_i ,
feasible egress route between the origin node and destination node
probability of failure
occurrence probability of the chemical accident
probability of dying of an individual in the case of failure
"probit" variable
constants depending on the types of chemicals;
lethal dose, for toxic materials

Download English Version:

https://daneshyari.com/en/article/5019602

Download Persian Version:

https://daneshyari.com/article/5019602

Daneshyari.com