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Colloidal spheres attached to a quartz crystal microbalance (QCM) produce the so-called “coupled resonances”.
They are resonators of their own, characterized by a particle resonance frequency, a resonance bandwidth, and
amodalmass.When the frequency of themain resonator comes close to the frequency of the coupled resonance,
the bandwidth goes through a maximum. A coupled resonance can be viewed as an absorption line in acoustic
shear-wave spectroscopy. The known concepts from spectroscopy apply. This includes the mode assignment
problem, selection rules, and the oscillator strength. In this work, the mode assignment problem was addressed
with Finite Element calculations. These reveal that a rigid sphere in contact with a QCM displays twomodes of
vibration, termed “slipping” and “rocking”. In the slipping mode, the sphere rotates about its center; it exerts a
tangential force onto the resonator surface at the point of contact. In the rocking mode, the sphere rotates
about the point of contact; it exerts a torque onto the substrate. In liquids, both axes of rotation are slightly
displaced from their ideal positions. Characteristic for spectroscopy, the twomodes do not couple to themechan-
ical excitation equally well. The degree of coupling is quantified by an oscillator strength. Because the rocking
mode mostly exerts a torque (rather than a tangential force), its coupling to the resonator's tangential motion
is weak; the oscillator strength consequently is small. Recent experiments on surface-adsorbed colloidal spheres
can be explained by the mode of vibration being of the rocking type.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The quartz crystal microbalance is well known to the scientific com-
munity as a film thickness monitor [1] and, further, as a tool to study of
soft layers beyond gravimetry [2,3]. Central to the advanced QCM is the
ability to determine the resonance bandwidth in addition to resonance
frequency and to compare shifts of frequency and bandwidth between
overtones [4]. The models of stratified viscoelastic layer systems on a
QCM surface are well-established [5,6].

Many samples of practical interest are not stratified layers. This in-
cludes particles [7–9], cell layers [10], vesicles [11], viruses [12,13],
and bacteria [14–16]. Generally speaking, the prediction of the shifts
in frequency and bandwidth (Δf andΔΓ) induced by structured samples
is challenging. Numerical methods are required [17]. There is one group
of heterogeneous samples, though, which is amenable to analytical de-
scription. If the particle of interest contacts the resonator surface across
a sufficiently narrow contact (a “point contact”), and if, further, neigh-
boring contacts are elastically independent from each other, the only
parameters of relevance are the tangential force and the torque. Since
the zone of deformation is small, one can define a tangential displace-
ment and an angle of rotation, to be evaluated far away from the

deformed zone (Fig. 1A). The deformed region in the following is called
“the contact”. The fact that the contact is localized is critical to the
analysis.

In the past, the complications arising from themotion of the external
object being a superposition of translation and rotation have often been
avoided by choosing the external objects so heavy that they were
clamped in space by inertia [18,19]. Large spheres do not follow the
MHz oscillation of the resonator, they undergo neither rotation nor
translation. The angle of rotation then is zero; the displacement be-
tween the two sides of the contact is equal to the displacement of the
resonator surface, given as u0cos(ωt) with u0 the amplitude of oscilla-
tion. Dividing force by displacement, one obtains the contact's tangen-
tial stiffness.

The arguments below are concerned with situations, where the ex-
ternal object is too small to be clamped in space. Most bio-colloids fall
into that class. The prospect of being able to measure the stiffness of a
link between a bio-colloid and a solid substrate has attracted much in-
terest. The situation evidently becomes more complicated than for
large immobile spheres, but as long as the object is stiff, translation
and rotation can be accounted for with suitably modified equations.

Particles in themicron-size range give rise to a phenomenon known
since 1985, which is the “coupled resonance” [20]. (Coupled resonances
were known before, but they were put into the context of QCM-based
sensing by Dybwad at that time.) An introduction to coupled resonances
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is given in Section 2. It turns out that a coupled resonance amounts to an
absorption line in shear-wave spectroscopy. A particle linked to the sur-
face has its own frequencyof vibration.With aQCM, one cando vibration-
al spectroscopy on surface-attached colloids. The conceptual analogies
between coupled resonances and shear-wave spectroscopy are far-
reaching. Keywords are mode-assignment, modal mass, modal stiffness,
homogeneous linewidth, heterogeneous linewidth, degeneracy, selection
rules, and oscillator strength. These terms can all be applied to shear-
wave spectroscopy. The oscillator strength, in particular, is non-trivial.
The oscillator strength is needed to explain experimental results.

A complication not appreciated by Dybwad was the fact that there
are (at least) two dynamic variables, which are the position of the par-
ticle along the direction of surface displacement and the angle of rota-
tion into the same direction. The conjugate variables are a tangential
force and a torque. Because there are two dynamic variables, there are
two coupled resonances. Dybwad'smodelmisses this aspect. He depicts
the geometry as one-dimensional. The way he draws his central dia-
gram alludes to rotation, but he does not elaborate. The following dis-
cussion closes this gap.

2. Coupled resonances

Central to the prediction of the frequency shift is the small-load ap-
proximation, which states that the complex frequency shift (Δf ̃ =
Δf + iΔΓ, with Γ the half-bandwidth at half-height) is proportional to
the load impedance, Z̃L. The load impedance is the area-averaged ratio
of stress and velocity at the resonator surface. We have:

Δ~f
f F

¼ Δ f þ iΔΓ
f F

≈
i

πZq

~σ0

~v0

� �
area

¼ i
πZq

~ZL ð1Þ

A tilde denotes a complex variable and an index 0 denotes a complex
amplitude of a time-harmonic variable. Γ (the half-bandwidth) is relat-
ed to thewidely used “dissipation factor” [21],D, by the relationD=2Γ/
f. fF is the fundamental frequency, Zq = 8.8 · 106 kg m−2 s−1 is the
acoustic wave impedance of AT-cut quartz. σ is the tangential stress, v
is the tangential velocity, and ZL̃ ≤~σ0/ṽ0 N is the load impedance (the
ratio of stress and velocity). Angle brackets denote an area average.

For discrete contacts, the load impedance can be expressed as NP/A
F ̃0/ṽ0 = NP/A Z ̃mech with NP the number of particles and A the active
area, F̃0 the amplitude of the periodic force exerted at the contact, and
Z̃mech the mechanical impedance of the sphere in contact with the sur-
face (the force-to-velocity ratio, see below). In the following discussion,
we exploit the electromechanical analogy. The sphere-plate assembly
can be modeled by a mechanical equivalent circuit as depicted in Fig.
1B. The force exerted by an arrangement of dashpots, springs, and
point-masses follows from themechanical impedances of the individual
elements and certain rules of how to add impedances together. These

rules are the analogs of the Kirchhoff rules in electrical engineering.
There is a complication with regard to the mechanical Kirchhoff rules:
In mechanical circuits, impedances are additive if the elements are
placed in parallel, while inverse impedances are additive if the elements
are placed in series. In this regard, the rules differ from electricity, where
impedances are additive for elements arranged in series. The mechani-
cal impedances entering the problemare iωMP, (originating from a rigid
point-mass MP), κP/(iω) with κP the spring constant of a Hookean
spring, and ξP, where ξP is the drag coefficient of a dashpot. κP, ξP, and
MP will have to be interpreted as a modal stiffness, a modal damping,
and a modal mass later on. The meaning of these parameters depends
on the mode of vibration. At this point, we assume κP, ξP, and MP to be
the same for all spheres, that is, we ignore heterogeneity. Also, κP and
ξP might depend on frequency, but we treat them as constant for sim-
plicity. κP is also called “contact stiffness” in the following. Note that
this definition pertains to an individual contact (as opposed to the stiff-
ness of an interface between rough surfaces).

Representing a particle in contact with the resonator surface by an
equivalent circuit as in Fig. 1B, one finds the load impedance as

~ZL ¼ NP

A
κP
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In step 2, the spring constant and the drag coefficient were sub-
sumed under a single complex spring constant, ~κP , given as ~κP =
κP + iωξP. Inserting Eq. (2) into Eq. (1), one finds
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¼ NP

A
−ωMP

πZq
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¼ NP
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−ωMP

πZq

κP þ iωξP
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Eq. (3) can be simplified by introducing the “particle resonance fre-
quency”, ~ωP , as

~ω2
P ¼ 4π2~f

2
P ¼ ~κP

MP
¼ κP

MP
þ iωξP

MP
¼ ω2

P þ iωγP ð4Þ

In the last step, the damping factor was introduced, which is defined
as γP = ξP/MP. γP has dimensions of frequency. If the damping of the
coupled resonance is small (only then), γP/(2π) is equal to the band-
width of the coupled resonance (see Fig. 2). One can then write ~ωP

≈ ωP + iγP/2 close to the resonance. To see that, write

~ωP ¼ ωP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iωγP

ω2
P

s
≈ωP 1þ iωγP

2ω2
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 !
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2
ð5Þ

Taylor-expansion of the square root was used in step 2;ω≈ωP was
used in step 3. For narrow resonances, the imaginary part of the com-
plex resonance frequency is equal to half the bandwidth (see, for exam-
ple, Section 4.1.3 in Ref. [22]). Note, however, that coupled resonances
often are highly damped. γP should therefore not be viewed as the
bandwidth.

Inserting Eq. (4) into Eq. (2) and using the small load approximation
(Eq. (1)), one finds

Δ~f
f F

¼ NP

A
−ωMP

πZq

~ω2
P

~ω2
P−ω2

ð6Þ

Δf and ΔΓ plotted versusω form a resonance curve on their own, hence
the name “coupled resonance”. The real and the imaginary parts of Eq.

A B MP

Fig. 1.A: Sketch of a contact between a sphere and the resonator surface. It is essential that
the contact is smaller than the sphere and, also, is smaller than the wavelength of sound.
Only the region close to the contact (dashed circle) is deformed. Together with the
deformed region of the substrate, it forms a Hookean spring. B: Mechanical equivalent
circuit. Viscous dissipation is accounted for by a dashpot.
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