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a b s t r a c t

In this study, a novel numerical calculation method is proposed to investigate the fatigue crack growth
evolution in aluminum alloy sheets accounting for the measurement error. Unlike the deterministic
numerical method, the initial crack length is considered to be a modified parameter with a small correc-
tion term due to the measurement error; the solution to the crack growth equation is expressed in the
form of a perturbation series after introducing said small parameter. By combining the proposed pertur-
bation series expansion method (PSEM) with the deterministic crack growth equation, a series of modi-
fied equations for predicting the crack length history are derived based on the generalized multinomial
theorem. Further, by substituting the initial condition under perturbation into the modified equations,
variations in crack length versus the cycle number can be obtained. The proposed method is verified
by comparing numerical results with experimental data, and the results demonstrate that the proposed
model is indeed feasible and effective for predicting fatigue crack growth evolution.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fatigue damage effect on most engineering structures under
repeated or cyclic external loads is one of the most significant
mechanisms of deterioration [1,2]. Defects are formed inevitably
during the manufacturing and fabrication stages which increase
stress to initiate cracks. Considering the various service environ-
ments of the components, the impact of fatigue damage on the
whole structure can vary from minor degradation to complete fail-
ure [3]. The crack length history, as shown in Fig. 1, can be mea-
sured from experiment or through mathematical integration of
the two-parameter equation [4] and plays an important role in
allowing time for repair or replacement of the component as nec-
essary [5]. Thus, in recent years, many researchers have attempted
to establish crack growth equations to predict the crack growth
history of structures under repeated or cyclic loading.

Generally, the fatigue crack growth rate is associated with the
stress intensity factor according to the principle of linear elastic
fracture mechanics. Paris et al. [6] associated crack growth rate
da=dN to the maximum stress intensity factor Kmax in a paper pub-
lished in 1961. Based on research by Liu [7], the crack growth rate
was related to the stress intensity factor range DK. The similar rela-
tionship was established by Paris and Erdogan [8], which led to the

well-known Paris equation. In recent years, a variety of modified
expressions of the classic Paris equation have been presented
accounting for different conditions [9], including stress ratio and
the maximum stress intensity factor effect [10,11] and crack clo-
sure [12,13].

Despite these valuable contributions to the literature, a reliable
prediction or simulation method for crack growth under compli-
cated service loadings remains elusive [14]. Based on the previous
work [5], measurement errors and uncertainties in the model and
data are the roots of this issue. For instance, to predict crack
growth evolution from the crack growth equation, one needs to
solve the differential equation with a known initial crack length;
thus, the initial crack length is highly significant in terms of appro-
priate numerical calculation of crack growth life. The initial crack
length of engineering structures can be obtained via nondestruc-
tive inspection, but doing so neglects measurement errors in the
initial crack length due to detection level limitations. That is to
say, the initial crack length measurement data will always contain
uncertainties due to measurement error [15]. Thus, assuming the
deterministic value of the initial crack length is a weak point of this
approach to fatigue damage tolerance; a more reliable numerical
calculation procedure is yet needed [16].

To date, several researchers have conducted theoretical studies
on the measurement error in initial crack length; the initial crack
length is usually treated as a basic random variable subjected to
probabilistic methods. Proven [16] found that the two-parameter
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Weibull distribution best describes the distribution of the initial
crack length, while Besuner and Tetelman [17] assumed the distri-
bution of the initial crack length is approximately lognormal with
the standard deviation. Zheng and Ellingwood [18] found that the
initial crack length is normally distributed due to measurement
noise with respect to the true size of a crack as-detected. Zhang
and Mahadevan [19] presented a Bayesian procedure to quantify
the uncertainties in distribution parameters including the initial
crack length. Ray et al. [20] extended the lognormal-distributed
crack length model of fatigue crack propagation based on asymp-
totic analysis of growing fatigue near-crack-tip fields in damaged
materials. However, this work was focused on the inherent mate-
rial uncertainties while unknown initial conditions (including the
initial crack length) related to the measurement instrument’s pre-
cision were not considered. An important problem inherent to the
probabilistic approach is that the probability distribution function
must be constructed with a large amount of statistical information
[21–23], while sufficient information regarding uncertainties is
often difficult to obtain [24–26].

Comparatively, the perturbation method [27,28] is relatively
simple and efficient. It uses an artificial small parameter for the
numerical analysis of complex systems without necessitating
uncertain information. It has been applied to structural response
analysis [29], structural eigenvalue problems [30], and model
updating [31], but has been only rarely applied to predicting crack
growth evolution. Stepanova and Igonin [32,33] applied the pertur-
bation technique to analyze the growth of fatigue near-crack-tip
fields in a damaged material, but mainly focused on the asymptotic
expansions of the stress and strain tensor components while
neglecting perturbation in the crack length caused by measure-
ment error.

The main contribution of this paper is the perturbation series
expansion method, which is proposed to quantify the initial crack
length with consideration of measurement error (not dependent
on the probability distribution function) and to reliably predict
crack growth evolution. Perturbation in the initial crack length is
considered by introducing an artificial small parameter and the
asymptotic expansion of the crack length is determined accord-
ingly. A series of modified crack growth equations can be derived
based on the generalized multinomial theorem, which permits
the engineer to obtain the crack length history (crack length versus
loading cycles).

The remainder of this paper is structured as follows. The basic
crack growth approach is described in Section 2, and in Section 3,
the corrected crack growth equations are obtained based on the
perturbation series expansion method (PSEM). Three examples
are accomplished to demonstrate the feasibility and effectiveness
of the proposed approach in Section 4, and Section 5 provides a
brief summary and conclusion.

2. Basic crack growth rate equations

The linear elastic fracture mechanics (LEFM) approach has been
established as an effective theoretical tool to investigate crack
growth processes [34]. In 1958, the stress-intensity factor K was
first introduced by Irwin [35] for static fracture analysis. See the
following equation:

K ¼ bðaÞ � r � ffiffiffiffiffiffi
pa

p ð1Þ
where a is the crack length, r is the far-field stress, and bðaÞ is the
geometric function with respect to the possible stress concentra-
tion; the stress-intensity factor K depends on all these parameters
simultaneously. Based on Irwin’s concept, Paris and Erdogan [8]
established a power-law relationship as:

da
dN

¼ C � ðDKÞn ð2Þ

where da=dN is the fatigue crack growth rate, DK is the stress inten-
sity factor range, and C and n are material-specific constants that
are determined experimentally and listed in Table 1 as a few exam-
ple values for typical materials.

A schematic representation of da=dN versus DK for the typical
crack growth behavior in metals is illustrated in Fig. 2, where the
relationship between crack growth and DK can be divided into
three regions [19]. The crack growth is slow in region I while
region III is related to the rapid crack propagation; in region II,
known as the ‘‘intermediate crack growth” or ‘‘Paris region”, the
Paris law and its variants can be applied for the prediction of the
crack growth history.

The stress intensity factor range DK in Eq. (2) can be obtained
as:

DK ¼ Kmax � Kmin ð3Þ
where Kmax and Kmin are the maximum and minimum stress inten-
sity factor. Based on LEFM theory, DK can be derived as follows:

DK ¼ Kmax � Kmin ¼ bðaÞ � ðrmax � rminÞ �
ffiffiffiffiffiffi
pa

p ð4Þ

Fig. 1. Schematic illustration of crack length versus time/cycles.

Table 1
Crack growth data for various technical materials [34].

da=dN ¼ C � ðDKÞn C n

Steel 5:79� 10�11 2:25

Aluminum alloy 9:82� 10�12 3

Titanium alloy 3:56� 10�15 4
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Fig. 2. Schematic diagram of the relationship between crack growth rate and DK.
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