
Solution of two-parameter cohesive law using Chebyshev polynomials
for singular integral equation

Harshit Garg, Gaurav Singh ⇑
Department of Mechanical Engineering, Birla Institute of Technology & Science, Pilani – KK Birla Goa Campus, Zuarinagar 403726, Goa, India

a r t i c l e i n f o

Article history:
Received 6 October 2016
Revised 22 December 2016
Accepted 8 January 2017
Available online 10 January 2017

Keywords:
Crack
Cohesive zone
Cohesive stress
Chebyshev
Hilbert
Singularity

a b s t r a c t

Complex stress and displacement potentials are used to examine the effect of cohesive stress on crack
opening and stress around a two-dimensional slit-like crack in an isotropic material. A two-parameter
right-angled triangular relationship between the cohesive stress and crack opening is assumed to hold.
Following an earlier work, the problem is reduced to a singular integral equation (SIE), which is solved
numerically using Chebyshev polynomials. The results quantify the effect that the cohesive stress has
on the crack opening, and on the stress field around the crack. Finally, it is also shown that the region
of action of cohesive stress (‘‘cohesive zone”) comes out as a part of the solution based on the choice
of the two parameters. The presented method is more direct than the commonly used variational
methods.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Theories for predicting crack propagation in brittle elastic mate-
rials have been advanced by Griffith [1], and augmented by Irwin
[2] and Barenblatt [3]. These works are considered fundamental
in the field of fracture mechanics. The energy-balance criterion of
crack growth [1] has been generally accepted by fracture mechani-
cians to be the most appropriate test to determine the crack initi-
ation in a body that is loaded by external forces. However, this
theory ignores the supposedly unrealistic prediction of infinite
stresses at the crack tip. Though linear elastic fracture mechanics
has been shown to be valid very close to the crack tip (1 nm for
a silicon crystal) for brittle materials [4], the macroscopic contin-
uum level treatments in fracture mechanics are riddled with infi-
nitely large stresses near the crack tip [5]. Barenblatt [3]
attempted to resolve this issue by considering the so-called cohe-
sive stress (between the atoms/molecules) on opposite crack faces,
arguing that it will cause the stress at the crack tip to be finite. In
its original conception, the cohesive force was assumed to be an
attractive force that acts between the two faces of a crack that
are in close proximity, but not in actual contact.

This work was immediately picked up by many Soviet research-
ers of the time. The ideas contained in Barenblatt’s work had been
extended by researchers to many domains of fracture mechanics,

such as viscoelastic media [6] and thermal stresses [7]. Applica-
tions of the cohesive stress theory also appeared in hydraulic frac-
turing [8] and time-based fracture [9]. Attempts had been made to
study the thermodynamics of cohesive stress theory for arriving at
the condition of crack initiation [10]. Extensions to Barenblatt’s
theory have been proposed for a deeper understanding [11,12].

As time progressed, the availability of powerful computers
allowed the use of numerical techniques in the application of the
theory of cohesive stress in a crack [13–15]. Cohesive stress theory
forms a part of commercially available softwares these days, prov-
ing that it has become a mainstream serving industry and aca-
demics alike. Through its huge popularity and usage, it continues
to draw applications in self-healing materials [16], hydrogen
embrittlement [17], inertia of a propagating crack [18], multiscale
simulation of dynamic fracture [19], etc.

It is not difficult to observe that in almost all earlier works on
the cohesive stress, the prime question is related to crack growth
initiation and progression. As the cohesive stress acts by virtue of
the separation between the crack faces, it always acts – not only
when the crack grows or is about to grow. Despite the long history
of interest in the concept of cohesive forces, there have been very
few analytical investigations of the effect of this force without its
role in crack initiation or growth, for example Parihar [20] had
done investigations about crack opening by spatially varying inter-
nal pressure. The present work deals with cohesive stress which
vary with the crack face separation (opening). In the present work,
the crack is assumed to neither grow nor be at a stage at which it is
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just about to grow, so that the focus remains on the cohesive stress
and its influence on the crack opening and the stresses around the
crack. A brittle, linear elastic isotropic material is considered. The
infinitely large body is given a remote biaxial loading, and a thin
slit crack is considered with almost zero initial crack opening. It
is possible to derive an expression following an earlier work [21],
in the form of a singular integral equation (SIE), for the crack open-
ing subject to a general cohesive law (ie. a cohesive traction-
separation relationship). However, the solution of this equation
will require selection of a specific cohesive law. SIEs have been
solved in fracture mechanics [22–27] but only constant stress on
the crack faces has been considered. In the present situation, as
will be seen, the two-parameter cohesive law is such that the cohe-
sive stress linearly varies with the crack opening bound by a cut-off
maximum value. It will be shown that Chebyshev polynomials are
capable of solving such cohesive laws in SIE and giving insights
into the stress field in the crack plane.

The exact nature of the cohesive law is an important parameter
in fracture mechanics for general boundary conditions and loading
[28]. Moreover, a complete understanding of the impact of the
cohesive stress on the crack plane stress requires the need for a
well-defined cohesive law. A clever way to get out of this funda-
mental problem is to assume that the cohesive force is related to
the internal or surface energy [29]. Some researchers assume a
simple law and then attempt to prove that it is reasonable [30].
Others appeal to micromechanics [31], atomic/molecular [32]
and experiments [33] to derive the cohesive law. The application
of these cohesive laws range from loading-unloading hysteresis
[34] to carbon nano-tubes structures [35]. In the present work, a
two-parameter right-angled triangular cohesive law is assumed
to act between the crack faces.

A review of the literature in this field proves that the need and
reason for consideration of the cohesive stress in a crack has been
debated, and different accounts have been given. For example, it
has been argued that the cohesive stress theory and the Griffith
theory lead to identical predictions of the equilibrium crack length
for small cohesive zones [5]. Others insist that Griffith was not
missing anything from his theory, but had implicitly included
cohesive stress in a different form [36]. The concept of the cohesive
stress has been used as a simplification in the process zone [37],
although it must be noted that a cohesive force (as a distance-
dependent force) exists even in the absence of the process zone
or plasticity. A more convincing motivation is that the singularity
in the crack opening stress is remedied by assuming the existence
of the cohesive stress near tip, where an attractive force between
the faces of the crack balances the elastic stress [38]. This is con-
firmed in the present work.

The now classical, and most widely used, Finite Element Meth-
ods (FEM) to solve cohesive crack problems are based on the vari-
ational principle where the original problem is converted to a
variational form which is then solved numerically. The presented
method to find the crack profile and stress in the crack plane is
arguably advantageous as it is more direct (lesser approximations
involved). In FEM techniques, the minimization of energy (sum of
strain energy and fracture energy) functional is done. The existence
of solutions of such problems has been mathematically questioned

[39]. This may also motivate the use of non-variational based
methods to study this problem – the presented SIE method being
one of them. It will be shown that this method offers rigorous
derivation and highly accurate results very close to the crack tip.

The region in the crack plane where the cohesive stress acts
(‘‘cohesive zone”) has no clear boundaries. Barenblatt [3] hypothe-
sized that the cohesive force acts between the crack faces for a
short region near the crack tip. However, some researchers choose
to ignore the cohesive stress acting between the crack faces, and
consider it only in the small process zone ahead of the crack tip
[40], whereas others take it to extend throughout the crack plane
[41]. A more convincing region of action of cohesive stress was
brought forward [42], which distinctly demarcated the region of
action of cohesive stress and the yield stress in a ductile material.
In the present work, it will be shown that the cohesive zone is
implicitly determined when the two parameters in the cohesive
law is chosen. Meaning, the traction-separation cohesive law deci-
des for itself the region where the cohesive stress will be acting.
The cohesive zone is shown to contract to the crack tip for certain
range of parameters – the physical significance on the stress field is
discussed for the same case.

The nature and region of action of the cohesive stress in a gen-
eral crack is defined in the next section, before specializing to a
thin slit crack to derive a singular integral equation. This equation
will be solved using Chebyshev polynomials, which will be vali-
dated before deriving and studying the results.

2. Nature and region of action of cohesive stress in a crack

The cohesive force is the attractive force between the atoms on
the opposite faces of the crack. The nature of this force maybe
ionic, or van der Waals, or any other special kind, but it will be
called cohesive as long as it is attractive in nature and resists the
increase of crack opening with the application of remote tensile
load. All the attractive forces in the crack plane are shown in
Fig. 1. The dashed (- -) forces are already accounted for in linear
elasticity, therefore only the solid (–) ones are referred to as cohe-
sive forces. The cohesive force will depend on the crack opening
and hence may act strongly or not at all at certain points depend-
ing on the crack opening. These cohesive forces are not included in
classical linear elastic fracture mechanics. The attractive forces in
the region ahead of the crack tip are therefore already included
in the linear theory of elasticity, and need not be separately consid-
ered. This is universally true for a crack in equilibrium that does
not intend to grow on the application of a small remote loading.

For a crack that does intend to grow, the definitions of the sur-
face energy and surface tension [43] will be useful for a clearer
understanding of the nature of cohesive stresses in a crack. The
surface energy c of a solid is defined as the work cdA needed to
reversibly and isothermally create an elemental area dA of the
new surface. This may be done by overcoming the weak van der
Waals forces or the strong ionic forces, both of which depend on
the distance between surface atoms on opposite faces of the crack.
Meanwhile, the asymmetry of interactions at the surface of a solid
causes a modification in the ordered arrangement, reflected in

Fig. 1. Attractive forces along the crack plane.
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