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a b s t r a c t

By examining how a defect within a crystalline material responds to small changes in its charge state, the
electronic properties of an ionized defect can be modeled by an effective work function and capacitance.
Such an approach leads to a correction formula to the total energy of a charged periodic system and
allows a comparison between the electronic band structure of the ionized defect to its corresponding
neutral one. The correction formula can be related to the potential alignment method and Makov–Payne
correction widely adopted in charged periodic systems. The new approach suggests both an alternative
interpretation and improvements to the popularMakov–Payne and potential alignment scheme. P-doped
Si, which has a shallow donor level, and an isolated vacancy in crystalline Si, which has a deep defect level
within the Si energy gap, are chosen as prototypical systems to demonstrate our method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The ability to examine theoretically the ionization of defects
and dopants in semiconductors is critical to the understanding
and development of many applications. Semiconductors are inten-
tionally doped with impurities which can be thermally ionized to
generate charge carriers. Unintentional structural defects and im-
purities can trap charge carriers, and the ionizations waste energy
as heat for both electronics and photovoltaic materials. A de-
tailed understanding of defect ionization can aid in the design and
optimization of such devices. Electronic structure simulations of
defects in crystallinematerials are accomplished by a supercell ap-
proach where the defect is periodically repeated to minimize sur-
face effects. Unfortunately, this poses serious problems to the study
of charged defects since the Coulomb interaction is long-ranged
leading to a divergence in the total energy of a charged periodic
system [1]. The divergence is relieved by introducing a neutraliz-
ing jellium background into the supercell [2]. However, there is an

∗ Corresponding author at: Center for Computational Materials, Institute for
Computational Engineering and Sciences, University of Texas, Austin, TX 78712,
USA. Tel.: +1 512 232 9083; fax: +1 512 471 8694.

E-mail addresses: tlachan@hkbu.edu.hk (T.-L. Chan), ajemyunglee@gmail.com
(A.J. Lee), jrc@ices.utexas.edu, jrc.ices@gmail.com (J.R. Chelikowsky).

artificial dependence of the ionization energy on the supercell size
L owing to the jellium background. One popular attempt to remove
such an artifact is the Makov–Payne (MP) correction [3–5], which
considers the electrostatic multipole interaction between charged
periodic unit cells and arrives at a convenient correction formula
for the total energy. The total energy can also be corrected by finite-
size scaling, where the L dependence is extrapolated to infer the
asymptotic value [4,5]. The interaction between themultipoles can
be removed by introducing atom-centered Gaussian charges [6]
or local moments to counter the multipole moments [7,8] within
the unit cell. For aperiodic (such as molecules) or partially periodic
systems (such as nanowires and nanofilms), interaction between
unit cells can be reduced by restricting the wave functions [9–11]
or truncating the electrostatic potential [12–14] along the aperi-
odic directions. There are specific schemes that address partially
periodic systems [15], such as charged nanowires [16,17] and sur-
faces [18–21].

In the supercell approach adopted in typical plane-wave codes
for electronic structure calculations, the self-consistent electro-
static potential is handled by Fourier transform. Since the su-
percell is periodically repeated throughout the whole space, the
constant term corresponding to the vacuum energy level of the
Fourier transform is not defined. While the vacuum level is irrel-
evant for neutral systems as it is cancelled out in the total energy
expression [22], the total energy does depend on its value for a
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Fig. 1. Ionization of P-doped Si nanocrystals with the confined boundary condition. (a) The geometry of a Si34H36P nanocrystal. The lightly shaded atom at the center is the
P dopant, and the dangling bonds of the Si nanocrystal are passivated by small H atoms. The arrow indicates an approximate radius of the nanocrystal. (b) The data points
are the ionization energies IE as a function of charge state q calculated using the confined boundary condition. The curve is a least-square fit using Eq. (1). The same plots
are depicted for a Si146H100P nanocrystal in (c) and (d).

charged system. The vacuum level can be specified by aligning the
electrostatic potential of a small region of the supercell to a phys-
ically meaningful value. A case study on ZnO and GaAs suggests
that the MP correction together with potential alignment can lead
to well-converged formation energies of charged defects after the
finite-size effects unrelated to electrostatic interactions are elim-
inated [23]. Based on an analysis of the electrostatics in dielectric
media, Freysoldt et al. derived a more rigorous correction scheme
for the electrostatic interaction between supercells and the correc-
tion due to the potential alignment [24].

Here we present an alternative perspective of this charged de-
fect problem. A defect in a crystalline material introduces defect
levels within the energy gap of a crystalline semiconducting ma-
terial. For small variations of its charge state, we regard the defect
level as an effective electron reservoir. The addition or extraction
of an electron from the defect level can thus be characterized by
a work function W and a capacitance C . Upon charging, a poten-
tial difference builds up within the material and contributes to the
ionization energy of the defect. Due to the long-ranged Coulomb
interaction between periodic ionized defects, both W and C de-
pend on the supercell size L, and lead to the size dependence of
the ionization energy IE of a defect. By examining the trends of
W and C with respect to L, a correction to W and C can be in-
ferred and results in a correction for IE. We shall show that the
correction due to W is equivalent to the potential alignment, and
the correction formula for C can be related to the MP correction.
Our scheme not only provides an alternative description of the
popular MP scheme, but also suggests that a charged defect has a
finite size, which should not be treated as a point charge in a di-
electric medium as in the MP correction formula. The capacitances
suggested in our scheme can be utilized to align the electronic
band structure of the ionized defect against the neutral system.
Our scheme is first validated by comparing the ionization energy
of a P-doped Si nanocrystal calculated using a confined boundary
condition (i.e. no periodicity imposed) with that calculated by the

three dimensional (3D) periodic boundary condition. The scheme
is then applied to crystalline Si, where the ionizations of a shallow
P substitutional dopant and a deep isolated vacancy are examined.

Our calculations are based on PARSEC [25,26], which is a real-
space electronic structure code for density functional calculations
(DFT) [27,28]. The local density approximation (LDA) using the
Ceperley and Alder exchange–correlation functional [29] param-
eterized by Perdew and Zunger [30] is employed. Since the ioniza-
tion energy of P in Si is insensitive to spin polarization (the error
is less than 0.02 eV), the calculations are not spin polarized. The
ion-core potentials are based on the Troullier–Martins pseudopo-
tentials [31] in the Kleinman–Bylander form [32]. The real space
grid is set to be 0.7 a.u., which is sufficient to model the ionization
of P and Si. Since the goal is to simulate isolated defects, sufficiently
large supercells are employed such that only theΓ point is used for
the k-point sampling. Atomic structures are relaxed such that the
force on each atom is less than 0.001 Ryd/Bohr.

2. Ionization energy of a P-doped Si nanocrystal

To demonstrate the idea, we evaluate the ionization energies
IE of a small hydrogen-passivated P-doped Si34H36P nanocrystal
as illustrated in Fig. 1(a). For the confined boundary condition, the
system is enclosed by a spherical domain where the wave function
is set to be zero at the boundary. IE(q) = E(q) − E(0) is found
by the difference in the total energies of the nanocrystal between
charge state q and the neutral state. The equation

IE(q) = Wq +
q2

2C
+ ∆Erelax (1)

describes the trend as depicted in Fig. 1(b). If a small amount of
charges (|q| < 1) are added or extracted, then the defect level
within the Si energy gap can be regarded as an electron reser-
voir, and the system is effectively metallic in this small q regime.
The energetics of charging a piece of metal can be described by
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