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a b s t r a c t

The recently developed consecutive-interpolation local enriched partition-of-unity method based on 4-
node quadrilateral element (XCQ4) is used to study quasi-static crack propagation in 2-dimensional
solids. For some of these problems numerical results have also been calculated with the standard
extended finite element (XQ4), provided that the two approaches have the same number of degrees of
freedom. In addition, two different versions of enrichment functions capturing the crack tip fields are
taken into account, integrating into either the XCQ4 or XQ4. In each case, results have been computed
with both settings and compared between each other. It is found that the numerical solution using the
XCQ4 element has better accuracy than that found with the XQ4, and these solutions agree well with ref-
erence solutions available in literature. The underlying difference between the consecutive-interpolation
basis functions and those for the traditional XQ4 is that the former approximation functions constructed
by incorporating both nodal values and averaged nodal gradients obtained from linear shape function as
interpolation conditions, enhancing and smoothing the stress fields and stress intensity factors.
Additionally, the conditioning issue of the developed method is also numerically examined.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The classical finite element method (FEM) has been proven to
be effective numerical methods for solving many engineering
problems [1]. Particularly modelling crack propagation, however,
remeshing is required in the FEM and that must be carried out dur-
ing the evolution of crack. This task is cumbersome and it makes
the method not effective in general. The extended finite element
method (XFEM) and its variants, e.g., see Belytschko and Black
[2], Zhang and Bui [3], Sharma et al. [4], Kumar et al. [5], Stroubou-
lis et al. [6], Fries and Belytschko [7] have developed as its original
goal is to overcome the drawbacks of the FEM. The partition of
unity scheme [8] is utilized in XFEM to facilitate the standard
approximation of displacement by a set of local enriched elements
to accurately acquire the fracture parameters of discontinuity,
which make modelling the moving discontinuity without altering
the initial prescribed mesh. Meanwhile the set of Heaviside and
asymptotic crack tip enrichment functions increase the power of

local solution by incorporating the arbitrary functions into the
basis of the FEM.

Alternatively, extended meshfree methods [9,10], which handle
only the nodal data to describe the crack, allow representation of
crack topology with the aid of the vector level set technique with-
out the finite element mesh. Recently, the edge-based strain
smoothing technique using a special singular element [11] or the
extended isogeometric analysis in terms of local partition of unity
method [12,13] have also been introduced and applied to deal with
fracture problems in solids as well as in multiphase materials.
Other approaches such as the Lepp-Delaunay based on mesh
refinement algorithm for triangular meshes [14], and the scaled
boundary finite element method (SBFEM) [15,16] are those that
devoted to simulate crack propagation.

The new enrichment functions [17,18] for crack tip field are
proposed as only two additional degrees of freedom are added at
each support nodes of the tip element to reduce the matrix size.
For solving the quasi-static and mixed mode fracture problem sev-
eral numerical research achievements can be followed [19–24].
Further studies using the enrichments devoted to advanced com-
posite materials and complicated configurations are also interest-
ing to researchers majoring in computational fracture mechanics,
see e.g., Bayesteh et al. [25], Bui and Zhang [26], Yu et al. [27],
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Bui and Zhang [28], Bui et al. [29], Bhardwaj et al. [30], Yu et al.
[31].

Recently, the so-called twice-interpolation finite element
method (TFEM) using triangular elements is proposed by Zheng
et al. [32] for solid mechanics problems. This new approach
involves two stages of interpolation to construct the trial function.
The first stage performs similar to that of the traditional FEM, how-
ever the average nodal gradients are additionally computed in the
second stage to form the interpolation functions. Hence the trial
function rebuilt by combining the nodal displacement and average
gradients reveals more consecutive nodal gradients and higher
order polynomial compared with the normal FEM. Later, the
twice-interpolation method is further developed and employed
in commercial ALOF by Wu et al. [33] for crack propagation in
2D elastic solids by coupling the nodal relaxation technique and
node projection technique. Yang et al. [34] provided a three-node
triangular element with continuous nodal stress. The numerical
methodology done in Yang et al. completely differs from the
twice-interpolation based element [33], as a result of applying
the idea of the previous partition-of-unity based FE-Meshless
quadrilateral element. Bui et al. [35] developed a new 4-node
quadrilateral element with continuous nodal stress based on the
twice-interpolation procedure (also known as consecutive-
interpolation procedure – CIP) to the standard 4-node quadrilateral
element for stress analysis of 2D elastic solids. Then, Kang et al.
[36] further extended the CIP-based CQ4 element [35] to linear
fracture problems in 2D by enrichment of the approximation func-
tions in terms of local partition of unity method [8]. The method is
named as XCQ4, which shows higher accuracy of the SIFs and
smoother stresses than that computed using the classical XFEM
[36]. The purpose of XCQ4 element is obvious from the aforemen-
tioned advantages and can be summarized concisely that the trial
solution and its derivatives are continuous across inter-elements.
This improvement could enhance the accuracy of the gradients of
trial solution and also avoid handling smoothing operation tech-
nique often operated at the post-processing stage. Another impor-
tant point should be noted that the proposed approach does not
alter the total number of the degrees of freedom (DOFs), implying
that both approaches take place the same total number of DOFs.

The motivation of this work is to extend the recently developed
XCQ4 element to the modelling of crack propagation problems in
2D solids. Upon achievements in Bui et al. [35] and Kang et al.
[36], it can be observed that the proposed XCQ4 performs well
for the SIFs involving single and mixed-mode fracture problems,

and that we expect to obtain good results in crack propagation
which is being presented in this work. It is because the XCQ4
approximation functions not only well capture the discontinuity
and singularity induced by cracks through the enrichments, but
also improve the accuracy of the stresses, consequently the stress
intensity factors (SIFs). In our work, the discontinuous Heaviside
function is taken to treat the discontinuity cut by crack, while
the asymptotic crack-tip branch functions are embedded into the
approximation functions to capture the singular field at the crack
tips. An alternative way of capturing the singular field at the crack
tip, another version of enrichment function, the ramp function,
along with the Heaviside function [17,18] is taken into account.
We consider to integrate the ramp functions into both the standard
XFEM using 4-node quadrilateral element (XQ4) and the developed
XCQ4. The SIFs calculated by using both approaches, the ramp
function with XCQ4 and with XQ4, are validated against reference
solutions and can be found in the numerical examples.

To determine the direction of crack growth, as stated in
Belytschko and Black [2] the maximum energy release rate crite-
rion, the maximum circumferential stress criterion or the maxi-
mum principle stress criterion and the minimum strain energy
density criterion can be used. In this work, the maximum circum-
ferential stress criterion is taken, while the domain form of interac-
tion integral is utilized for extracting the fracture parameters. The
accuracy and performance of the proposed XCQ4 for modelling
crack growth problems are demonstrated through six numerical
examples of fracture in 2D. The single and mixed-mode fracture
problems with complex configurations are considered. Addition-
ally, the conditioning analysis of each approach is numerically
examined.

The present paper is constructed in five sections. In Section 2,
formulation of the proposed XCQ4 element for cracks is illustrated,
in which the enriched approximation of displacement using the
developed XCQ4 methodology and construction of the CQ4 shape
functions and their characteristics, and the corresponding weak
form of the governing equation are involved. The calculation of
crack growth orientation based on the selected fracture criterion
and modified integration path of interaction integral are presented
in Section 3. The performances of the proposed XCQ4 for modelling
crack evolution are estimated by implementing six numerical
examples and the detailed discussions are subsequently stated in
Section 4. The last section summarizes the key points appeared
in this work and relevant constructive conclusions and remarks
are represented.

Nomenclature

x ¼ ðx; yÞ point of interest in 2DeNf consecutive-interpolation shape functions
N½i�

f shape functions at node i
N½i�

f ;x Average derivatives of shape functions
e element
df nodal displacement
ns total number of supporting nodes
we weight function of an element
De area of the element
/i, /ix, /iy

polynomial basis
Is total nodes
Jcut enriched nodes at crack faces
Ktip enriched nodes at crack tip
ui vector of nodal degrees of freedom
HðxÞ discontinuous Heaviside function
ai vector of enriched nodes

FaðxÞ asymptotic crack-tip branch functions
bak vector of enriched nodes
RðxÞ Ramp function
JðxÞ Heaviside-junction enrichment of crack
f nðxÞ signed distance function of the minor crack
f NðxÞ signed distance function of the main crack
ðr; hÞ polar coordinate at crack-tip
ðn;gÞ natural coordinate system
E Young’s modulus
m Poisson’s ratio
KI;KII stress intensity factors
qðxÞ smoothed function
s shear load
r tensile load
h crack angle
hc crack growth orientation
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