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The solution to a dynamic screw dislocation situated at the interface of a half-layer composed of an iso-
tropic substrate with orthotropic coating is obtained by means of the image method. The structural
energy dissipation is modeled by viscous damping. Moreover, stress field in the intact layer, under a pair
of anti-plane self-equilibrating point force is determined. These solutions are used to construct integral

equations in the half-layers delaminated by edge and embedded cracks, subjected to dynamic anti-
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plane excitation. The integral equations are solved numerically for the density of screw dislocation on
a crack surface and the results are used to determine stress intensity factor for cracks. The edge effect
as well as interaction between two interface cracks is studied.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The nucleation and subsequent growth of interfacial defects in
layered structures may result in their catastrophic failure. Interfa-
cial cracks subject to anti-plane deformation have been addressed
by several investigators. A crack at the interface of two equal-sized
dissimilar rectangular regions under tearing mode was the subject
of study by Zhang [1]. Analysis of a single and also an array of peri-
odic cracks between two dissimilar half-planes under oblique har-
monic SH-waves were taken up by Zhang [2,3]. Jin and Batra [4]
analyzed an interface crack between a functionally graded coating
and an isotropic substrate subjected to static anti-plane shear.
Wang and Gross [5] were concerned with the interaction of har-
monic anti-plane waves with an array of periodic interface cracks
in a multi-layered medium. They investigated the effects of a com-
bination of layers’ material properties, cracks geometry, wave fre-
quency and its incident angle on the dynamic stress intensity
factor (DSIF). Closed form solution for mode III deformation of a
crack at the interface of two dissimilar elastic layers of equal thick-
ness was derived by Li [6]. Ding and Li [7] analyzed anti-plane
deformation of a single and also a periodic array of cracks at
the interface of a functionally graded and a homogenous layer.
The solution to an interface crack between two anisotropic half-
planes under anti-plane time harmonic excitation was obtained
by Bostrom and Golub [8]. Bostrom and Kvasha [9] were concerned
with the propagation of time-harmonic SH-waves in a symmetric
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structure consisted of three anisotropic layers weakened by an
array of periodic interface cracks. The solution to mode III fracture
of two dissimilar infinite isotropic layers bonded to a functionally
graded strip with two offset interfacial cracks under impact loads
was carried out by Choi [10]. In another article, Choi [11] solved
the problem of an interfacial edge and also an embedded crack in
a half-layer composed of functionally graded and isotropic ones
under static anti-plane deformation.

Anti-plane transient analysis of interfacial cracks between
orthotropic and isotropic half-layers is taken up in this study.
The method of images is employed to obtain the solution to a
screw dislocation located at the interface of the layers. The stress
components are utilized to construct integral equations for interfa-
cial cracks. Integral equations are solved numerically to determine
the density of dislocation on a crack surface thereby obtaining
stress intensity factor at a crack tip. Several examples of edge
and embedded cracks are solved and interaction between cracks
is studied.

2. Formulation

We consider an isotropic layer with thickness h reinforced by an
orthotropic layer having thickness h;. The Cartesian coordinates
are chosen such that the x-axis coincides with the interface; thus,
|| < 00, —h <y < h;. Moreover, the x-axis is in the direction of
principal material properties of the orthotropic layer. The non-
vanishing constitutive equations for the orthotropic layer with
shear material constants C44 and Css undergoing anti-plane defor-
mation are
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Ox; = CSSW
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And for the isotropic layer with elastic shear modulus y, we
have

o f/,taw
Xz — A
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Substitution of Eq. (1) into equation of motion,

oiij = puix + Cuir, where p, is the mass density of the orthotropic
layer and C is the structural damping coefficient, yields
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Similarly, equation of motion for isotropic layer, leads to
2 2 2
ow ow_ L,o0w Cow ()
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where C; = y/p/p is the reciprocal of the shear wave velocity in the
isotropic material. Let a screw dislocation with Burgers vector B,(t)
be situated at the origin of coordinate system with dislocation cut
x > 0. Screw dislocation is identified by

where W(a,y,s) =
Wi(a,y,s)

; . The solutions to Eq. (8) are

ke{1,2} 9)

Fw(x,y,s)
= Ay sinh(2y) + Ay cosh(4y),

In Eq. (9) subscript k € {1,2} designate, respectively, regions
O0<y<hyand -h<y<0and

i =/Is(pss + ©) + Cs502)/Caa,
Ja = /S(Cis 4+ C/p) + o2 (10)

Utilizing Eqgs. (5) and (6), we may derive necessary conditions
for the determination of the unknown coefficients in Eq. (9) as

Wi (a,0,s) — Wy (o, 0,5) = B,(s) {é + n&(oc)}
aw, _dW,
C44W(CX, 0,s) = /JW(OC, 0,s)
dw,
W (OC7 hl ) S) =0
dw, B
W(d,—h,S)fO (11)
where B,(s) = £L[B,(t); s], i = v—1, and d(-) is the Dirac delta func-

tion. Applying boundary conditions (11) to Eq. (9) and taking the
inverse Fourier transform of resultant equations yields the Laplace
transform of the displacement field

Wik y,s) =& B2 sinh(B,h)B,(s)[— sinh(B, hy) sinh(B,y) + cosh(B; h1) cosh(B,y)]
Y3 = 3 T Cashy cosh(Byhy sinh(fy By + 1, sinh(B,h) cosh (B hy)
,u > ) sinh(/2h)B,(s)[sinh(4;hy) sinh(4;y) — cosh(41h1) cosh(4,y)] sin(xc)
/ [C4421 cosh(Ayh) sinh(A1hy) + Ao sinh(A;h) cosh(Z;1hy)] do, O<y<h (12)
Wixy.s) —  Ca SIND(B ), B:(5)[sinh(pyh) sinh(f) + cosh(yh) cosh(fay)]
YI=T5 COS(fh)Cas SRy ), + SnR(5,1)f, cosh(f )
Cas [ A1 sinh(41hy)B,(s)[sinh(4;h) sinh(4y) + cosh(4;h) cosh(Azy)] sin(xo) d I 0
A o(cosh(4;h)Caq sinh(A1hy) 41 + sinh(J2h) 2, cosh(41hy) ] % <Y<
w(x,0") —w(x,07) = B,(t)H(x) where
Oy(%,07) = 0,(x,07) © s(sp; + C) s(C2us + C)
B\ e (13)

where H() is the Heaviside step function. Moreover, the traction
free boundary condition on the layer boundary reads as

Gyl(xv h1) = O-yz(x7 *h) =0 (6)

Application of the Laplace transformation to Eqs. (3) and (4),
assuming stationary situation at the outset results in
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where w(x,y,s) = LIw(x,y,t); s]. We further use a complex Fourier

transform, F, to eliminate varlable X, arriving at
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From Egs. (12), (1) and (2), the Laplace transform of stress compo-
nents for a screw dislocation situated on the interface at x = ¢
become

Oalty,s) = _ HCssB;(s) Az sinh(Azh)[cosh(41 (hy —y))]cos[o(x — &)]
xz(X.Y,8) = J3 o 41Caacosh(iyh)sinh(21hy) + L4, sinh(Jzh) cosh(Zqhy)
0 (%,5) _ HCasB(s) B1Bz[sinh(B; (hy —y))]sinh(/2h)
ve\%:5) = 2 Caap, cosh(p,h)sinh(f; hy)+ pp, cosh(B, hy)sinh(,h)

UCasB,(S) / /172 sinh(A2h)[sinh(21 (hy —y))] sin[o(x — &))
T o 0[Cas’q cosh(Jzh)sinh(41hy) + i, sinh(4;h) cosh(41hy))

do, O<y<h

Galty,5) = UCs5B,(S) Jq sinh(41hy)[cosh (/2 (y + h))] cos[a(x — &)]
T Jo  Caa’qcosh(zh)sinh(2;hy)+ iz sinh(4zh)cosh(41hy)
Opa(%.7.5) =  UC4sB;(s) B1 By sinh(fy hy)sinh[, (h+y)]
v \X%:5) = 2 Caaff; cosh(p,h)sinh(Bhy) + up, sinh(f,h) cosh(f; hy)
1Ca4B,(s) [ 4172 sinh(Z1hy)sinh[/; (h+y)]sin[o(x - ¢)]
+ T A 0[Ca4/1 cosh(Z;h)sinh (21 hy) + i, sinh(2; h) cosh(41 hy)) do, ~h<y<0
(14)

org/10.1016/j.tafmec.2016.04.008

Please cite this article in press as: P. Yousefi et al., Half-layers with interface cracks under anti-plane impact, Theor. Appl. Fract. Mech. (2016), http://dx.doi.



http://dx.doi.org/10.1016/j.tafmec.2016.04.008
http://dx.doi.org/10.1016/j.tafmec.2016.04.008

Download English Version:

https://daneshyari.com/en/article/5019893

Download Persian Version:

https://daneshyari.com/article/5019893

Daneshyari.com


https://daneshyari.com/en/article/5019893
https://daneshyari.com/article/5019893
https://daneshyari.com/

