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a b s t r a c t

A two-dimensional multiple-histogram method for isothermal–isobaric ensemble is discussed in detail,
implemented for isothermal–isobaric Monte Carlo simulations of molecular clusters, and employed in
a case study on phase changes in pure water clusters containing 15 through 21 water molecules. Full
phase diagrams of these clusters are reported in the temperature–pressure plane over a broad range of
temperatures (T = 30–800 K) and pressures P = 103–109 Pa. The main focus of the work is on the
structural transformation occurring in the solid phase of these clusters and leading from cluster structures
with all molecules on the cluster surface to cage-like structures with onemolecule inside, and on how the
transformation is influenced by increased pressure and temperature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulations play a key role in cluster science since
they provide a deep insight into the physics and chemistry of these
objects which is not directly accessible to experimental investiga-
tions. Even at the classical level, numerical simulations can provide
valuable qualitative as well as quantitative data. Among two main
branches of molecular simulations methods, molecular dynamics
methods and Monte Carlo methods, the latter represent a compu-
tationally cheaper alternative and have been frequently used in the
past. Up to now, however, free clusters have usually been studied
using canonicalMonte Carlo approaches [1–6]. Thismayultimately
provide complete information about the evolution of the proper-
ties of various clusters along the temperature axis for temperatures
for which the evaporation of monomers from the cluster is negli-
gible. Amore detailed approach based, e.g., on isothermal–isobaric
Monte Carlo simulation techniques [7] has been much less fre-
quently applied despite the fact that it may provide a basically
complete information about the cluster phase behavior in the tem-
perature–pressure plane.

A couple of problems are closely linked to numerical simula-
tions. The most important problems may be (a) how to achieve a
sufficient convergence of simulated data and avoid quasiergodic-
ity,which becomesparticularly important if a coexistence region of
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two phases of a particular system is simulated, and (b) how to ob-
tain values of the quantities of interest (like internal energy, heat
capacity etc.) at thermodynamic conditions (temperatures, pres-
sures etc.) not included in particular simulation runs. Both prob-
lems have been addressed in the past and efficient procedures
have been developed to surmount them. Parallel-tempering tech-
niques, proposed originally for canonical, constant-temperature
simulations [8] and extended later to isothermal–isobaric calcu-
lations [7], have been developed to deal with the quasiergod-
icity problem and have soon become a simulation standard, at
least for canonical, constant-temperature studies. To deal with lat-
ter problem, reliable interpolation schemes must be used since
the size of the grids of simulated temperatures and pressures is
usually strongly limited due to computational demands. Multiple-
histogram techniques have proven to be very efficient in this re-
spect. The original multiple-histogram approach by Ferrenberg
and Swendsen [9] was first developed, similar to the evolution
of the parallel-tempering methodology, for canonical, constant-
temperature simulations and only recently has been generalized
to be used in isothermal–isobaric calculations [10], building on
the weighted histogram analysis method [11], an extension of the
original multiple-histogram method [9] towards multi-parameter
simulations. If combined with isothermal–isobaric Monte Carlo
calculations, the two simulation methods, parallel tempering
and multiple histograms, seem to be well suited for getting
converged thermodynamic data of the system under study for
basically arbitrary values of the temperature and pressure at ac-
ceptable computational costs. Since almost smooth dependences
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of thermodynamic parameters on the temperature and pressure,
e.g., for the system heat capacity or internal energy, can be ob-
tained in this way, they can be used in a detailed analysis of phases
and phase transitions in the system [12,2], leading eventually to a
full phase diagram in the temperature–pressure plane.

The main intention of this paper is to test the performance of
combined parallel-tempering and multiple-histogram techniques
in a case study on selected medium-sized water clusters, [H2O]N ,
with N ranging between 15 and 21 water molecules. The moti-
vation for this choice is that, according to previous studies (see,
e.g., Refs. [13–17]), a structural transformation occurs in isolated
water clusters with N ≈ 16–21 molecules at zero temperature
and zero pressure. This transformation consists in a gradual tran-
sition from the most stable structures having all water molecules
on the surface of the cluster (all-surface structures) to structures
with one molecule in the center of the cluster and with the re-
maining molecules forming a cage around it (cage-1 structures).
Let us briefly summarize the evolution of this observation. A first
systematic study on the classical equilibrium structures of water
clusters at zero temperature and zero pressure was reported for
cluster sizes up toN = 21 byWales andHodges [13]. In their study,
the authors used the simple TIP4P potential [18] for modeling the
intra-cluster interactions and the basin-hopping methodology for
cluster structures optimizations. They concluded from their calcu-
lations that up to N = 21 all the classical equilibrium structures of
[H2O]N are of the all-surface type except for N = 19, for which a
disordered cage-like structurewas reported as themost stable one.
This conclusion was a bit later confirmed for the TIP4P water clus-
ters by Hartke in a study employing a modified genetic algorithms
approach [14]. In addition to themost stable, all-surface structures,
Hartke found, however, that some metastable isomers of [H2O]N ,
N = 16–18 and N = 21, were of the cage-1 type and that they
were by 183meV above the most stable structure for N = 16,
but only by 22meV, 48meV, and 15meV above the most stable
structures for N = 17, 18, and 21, respectively. In the following
studies [15,16], Hartke repeated the calculations using a more ad-
vanced TTM2-F potential [19] and found that, for this potential, the
cage-1 structures are preferred in the N = 16 − 21 range. More
specifically, the all-surface structures were found as the most sta-
ble ones for N = 18 and 20, while the cage-1 structures became
most stable for N = 17, 19 and 21. Consequently, the all-surface
to cage-1 transition was reported to start at N = 17, to span the
interval of cluster sizes of N = 17–21, and probably to continue
up to N = 25. Interestingly, another transition to cage-2 struc-
tures (two molecules inside) was reported to start at N ≈ 28.
A more recent study using another advanced interaction model
(ABEEM/MM) [20], confirmed the observations of Refs. [15,16]
up to N = 24 and only led to different predictions for N ≥ 25.
For example, the formation of cage-2 structures was predicted in
this study to start at N ≈ 33. A benchmark study on equilibrium
structures of [H2O]N for the size range of N = 17–21 was reported
from the group of Xantheas [17]. The calculations of thisworkwere
performed at the quantum chemistry level and employed the MP2
correlation method and augmented correlation-consistent basis
sets of double and triple zeta quality. This state-of-the-art calcu-
lations confirmed the earlier results obtained for the TTM2Fmodel
[15,16]; namely, that the all-surface structures are the most sta-
ble ones for N = 18 and 20, while for N = 17, 19 and 21 the
most stable structures are of the cage-1 type. To our best knowl-
edge, no results have been reported up to now on the all-surface to
cage-1 transition in water clusters of this size range going beyond
the zero-temperature and, in particular, beyond the zero-pressure
limit. In this work, we try to partly fill this gap. Moreover, we show
that the methodology based on the combination of the parallel

tempering approach and multiple histograms can provide a firm
base for such an analysis. The 15-molecules water cluster is also
considered here since a detailed analysis of its thermodynamic be-
havior has been presented in a preceding study [21] which may be
useful for interpreting the phase behavior of larger cluster sizes.

The paper is organized as follows. First, a summary of the
method, code implementation, and computational details are
given in Section 2; second, computational data are presented and
discussed in Section 3 with the main focus on phase changes
in water clusters of considered sizes and, in particular, on the
all-surface to cage-1 transition in the solid phase; and finally,
conclusive remarks are given in Section 4.

2. Methods and computations

2.1. 2D multiple-histogram method

In the isothermal–isobaric ensemble, the residual part of the
mean value of a dynamical parameter, F , is expressed at particular
temperature T and pressure P as an ensemble average,
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where q and V are the system configuration and volume, respec-
tively, E int denotes the interaction energy of the system, and kB is
the Boltzmann constant. If the dynamical parameter depends on
the system configuration through the interaction energy only,

F = F

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
, (2)

the complicated high-dimensional integral on the r.h.s. of Eq.
(1) can be replaced by a computationally much cheaper two-
dimensional (2D) integration,
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where Ω(E int, V ) is the classical density of states and
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is the system configuration integral. Since Ω(E int, V ) is a func-
tion of two independent variables, we denote it hereafter as
two-dimensional (2D) density of states to distinguish it from the
one-dimensional density of states,Ω(E int), considered in constant-
volume calculations.

While the 2D integral on the r.h.s. of Eq. (3) can be rather
simply calculated using any method of numerical quadrature, the
calculation of Ω(E int, V ) may represent a rather tough task. How-
ever, a sufficiently accurate estimate of Ω(E int, V ) can be ex-
tracted at acceptable computational costs from two-dimensional
energy–volume histograms collected from isothermal–isobaric
simulations performed over a sufficiently broad range of tempera-
tures and pressures. The methodology for doing so is based on the
multiple-histogram (MH) approach proposed originally for canon-
ical, constant-volume calculations [9] and extended later to the
isothermal–isobaric case [10]. Themethod basically consists of two
phases. First, histograms of E int and V are collected from a se-
ries of isothermal–isobaric simulations carried out at various tem-
peratures (T = T1, . . . , TN ) and pressures (P = P1, . . . , PM ).
We call this initial phase the production phase since the produc-
tion of 2D energy–volume histograms is the main task of this first
step of the calculation. Second, the histograms recorded in the
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