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h i g h l i g h t s

• Analyzing the bending of functionally graded nanobeams based on Timoshenko beam theory.
• Considering surface stress effects of nanobeams by adopting the Gurtin–Murdoch theories.
• Deriving the governing equations by using the principle of minimum total potential energy.
• Investigating the influences of gradient index and surface stress on the bending responses.
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a b s t r a c t

The bending responses of functionally graded (FG) nanobeams with simply supported edges are
investigated based on Timoshenko beam theory in this article. The Gurtin–Murdoch surface elasticity
theory is adopted to analyze the influences of surface stress on bending response of FG nanobeam. The
material properties are assumed to vary along the thickness of FG nanobeam in power law. The bending
governing equations are derived by using the minimum total potential energy principle and explicit
formulas are derived for rotation angle and deflection of nanobeams with surface effects. Illustrative
examples are implemented to give the bending deformation of FG nanobeam. The influences of the aspect
ratio, gradient index, and surface stress on dimensionless deflection are discussed in detail.

© 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Nanoscale structures are widely used in various engineering
fields due to the specific physical and mechanical properties. Sur-
face effects have an important influence on mechanical proper-
ties of nanoscale structures owing to large surface-to-bulk ratio.
Poncharal et al. [1] studied the bending modulus of carton nan-
otubes by experiment methods and found it increased dramati-
cally with decreasing diameters. Some researchers focused on the
size-dependence of nanostructures by experiment or theoretical
methods [2–6]. The approaches of studyingmechanical behavior of
nanoscale structures include experiments method, atomistic sim-
ulationmethod, and continuummechanics method, etc. The appli-
cation of continuum mechanics method becomes more and more
extensive because performing the controlled nanoscale experi-
ments is very difficult and computational capacity of computers
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limits the atomistic simulation methods [7]. Gurtin and Murdoch
[8,9] developed a linear elastic surface effects theory based on con-
tinuum mechanics in which the surface of nanostructure is re-
garded as a membrane of zero thickness, and this membrane is
assumed to be fully adhered to the bulk material. Gurtin–Murdoch
surface elasticity theory has an important effect on the develop-
ment of continuum mechanics method. Recently, researchers in
various countries implemented a large number of investigations
on the influence of surface effects on mechanical properties of
nanostructures by using Gurtin–Murdoch surface elasticity the-
ory [10–13]. To give a more accurate analysis of nanostructure,
a continuum model of surface elasticity was formulated by ex-
tending Laplace–Young equationwhichwas established to address
the surface/interface tension of fluids to solid materials by Gurtin
et al. [14]. Then, the generalized Laplace–Young equation of curved
surface in nanostructures was derived by Chen et al. [15].

As a new kind of composite materials, functionally graded ma-
terials (FGMs) which have the continuous variation of material
properties have been applied in different fields of science and
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technology (for instance, optoelectronics, nanotechnology, tribol-
ogy and high temperature technology, etc.). FGMs are generally
composed of two constituents and volume fraction of each con-
stituent varies continuously across the functionally graded (FG)
body. Many researchers implemented bending, buckling, and vi-
bration analysis of FG beams [16–18].

In recent years, FG structures had been applied in micro/
nanoelectro mechanical systems [19–26], and the mechanical
analysis of FG nanostructures has become one of the attractive
research hotspots. Differential quadrature method was used to
investigate free vibration in axially functionally graded carbon
nanotubes based on the Timoshenko beam theory (TBT) [27]. FG
nanobeam [28–33] and FG nanoplate [34–36] were analyzed ex-
tensively on bending, buckling, and vibration. Euler–Bernoulli
nanobeams made of bi-directional functionally graded materials
were investigated by Mohammad et al. on buckling [37], bend-
ing [38], and free vibration [39] based on Eringen’s non-local elas-
ticity theory.

According to the above discussion, understanding the influence
of the surface effects onmechanical behavior of FG nanobeams has
an important role in the design of nanodevices. Timoshenko beam
theory considering the influence of transverse shear strain is more
appropriate to analyze mechanical behavior of the moderately
deep beam than the conventional Euler–Bernoulli beam theory
(EBT). In the present research, we focus on the bending of FG
nanobeams on the basis of Gurtin–Murdoch surface elasticity
theory and Timoshenko beam theory. The material properties
of FG nanobeam are assumed to vary in power law along the
thickness of beam. The principal of the minimum total potential
energy is adopted to determine the governing equations and the
corresponding boundary conditions. The exact solution for the
bending deflections is proposedunder simply-supported boundary
conditions. The effects of aspect ratio, gradient index and surface
elastic parameters on the deflection of the FG nanobeam are
discussed. The obtained solutions are also verified by conducting
some illustrative examples.

Figure 1 shows an FG nanobeam of length L, thickness h,
and width b. Both distributed transverse pressure q(x) and an
axial compressive force P act on this nanobeam. FG nanobeam is
assumed to bemade of two different constituents and the effective
material properties are assumed to vary continuously along the
thickness of beam. According to the rule of mixture, the effective
material properties P (i.e., bulk elastic modulus E, surface elastic
modulus Es, and residual surface stress τ0) can be expressed as

P = P1V1 + P2V2, (1)

where the subscripts 1 and 2 represent the first constituents and
the second constituents, respectively. Pi (i = 1, 2) is the effective
material properties of constituentmaterials, and Vi (i = 1, 2) is the
corresponding volume fractions which are assumed to change in
power law in z direction
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where k is the gradient index (or the volume fraction index).
Then bulk elastic modulus E (z), surface elastic modulus Es (z),

and residual surface stress τ0 (z) of the FG nanobeam can be
derived respectively in the following form
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Fig. 1. Schematic of FG nanobeam.

τ0 (z) = (τ02 − τ01)
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where τ01 and τ02 are residual surface stresses of two constituents.
Poisson’s ratio ν of FG nanobeam is generally taken as constant.

Due to no slipping between upper (below) surface and the bulk
material of FG nanobeam, there exist the continuous displace-
ments in the whole nanobeam. Based on Timoshenko beam the-
ory, the axial displacement u1 and the transverse displacement u3
at arbitrary point (x, z) of the nanobeam can be given as

u1 = u − zϕ, (7)
u3 = w, (8)

where u and w are axial displacements and transverse displace-
ments for arbitrary point (x, 0) on the neutral axis, respectively,
and ϕ is the rotation angle of cross-section with respect to the
neutral axis. The strain–displacement relationship of Timoshenko
beam theory can be expressed as

εxx =
du
dx

− z
dϕ
dx
, (9)

γxz =
dw
dx

− ϕ. (10)

Assuming residual stress in the bulk is negligible due to surface
energy, the bulk constitutive equations of FG nanobeam can be
given by

σxx = E (z)

du
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− z
dϕ
dx


, (11)

σxz = ψG (z)

dw
dx

− ϕ


, (12)

in which ψ is the shear correction factor and equals 5/6 for
a rectangular cross section. Shear elastic modulus G (z) =

E (z) / (2 + 2ν).
To analyze the surface stress effects of nanostructure, a

theoretical model is developed by Gurtin and Murdoch [8,9] based
on the elasticity continuum mechanics including surface stress
effects. And the following surface constitutive equations were
proposed [8,9]

σ s
αβ = τ0δαβ +


τ0 + λs


εγ γ δαβ + 2


µs

− τ0

εαβ + τ0us

α,β , (13)

σ s
αz = τ0us

z,α, (14)

where α, β = x, y, the superscript s is applied to denote the
quantities corresponding to the surface layer, and λs, µs are the
Lame constants of the surface.

The surface constitutive equations for FG nanobeam can be
obtained from Eqs. (13) and (14) as

σ s
xx = Es (z) εxx + τ0 (z) = Es (z)
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+ τ0 (z) , (15)

σ s
xz = τ0 (z)

dw
dx
, (16)

where the surface elastic modulus Es
= 2λs + µs.
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