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a b s t r a c t

Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries.
These non-linear characteristics of fluid, influence final outcome of the product. Such processes though
look simple are numerically challenging to study, due to the loss of numerical stability. Over the years,
various methodologies have been developed to overcome this numerical limitation. In spite of this,
numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme
(UDS) is often employed for improving the stability of algorithm. To elude this effect, some works been
reported in the past, where high-resolution-schemes (HRS) were employed and Deborah number was
varied. However, these works are limited to creeping flows and do not detail any information on the
numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction
flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all HRS
show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near
contraction region in the upstream section of domain, at varied elasticity number E ≈ 5. Furthermore, by
E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order
of undue oscillations in flow variable profiles is directly proportional to E.

© 2017 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics.
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1. Introduction

Viscoelastic fluids are special category of non-Newtonian fluids
which show viscous, elastic and non-linear responses to the flows.
Such characteristics make these fluids very useful in daily routine
works such as laundry liquids, glues, gels, oils, sauces, paints,
etc. Also, these fluids are abundantly used in process and poly-
mer industries. Typical industrial application includes extrusion
and mould flow processes. In these processes, final outcome of
the product depends significantly on the property and pattern of
flow [1]. As these processes offer abrupt contraction to the flow of
fluid, it gives rise to stress singularity near the re-entrant corner.
At this point, the stress term rises exponentially to very high value.
Hence, this problem is widely studied in past, both experimentally
and numerically [2,3].

With the advancement in conventional rheometers, experi-
mental works offer comparatively an easy prediction of flow prop-
erties [4]. However, this problem is numerically difficult to study
due to the non-linear nature of constitutive equations [5]. Also,
these works are subjected to loss of numerical stability at high
Deborah numbers, commonly referred as high Deborah number
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problem (HDNP) [6]. To overcome this elevated issue of HDNP, nu-
merous numerical methodologies have been put forward [7–14].
Amid this, some of the famous methodologies which can be ap-
plied to finite volume technique are both-side-diffusion (BSD) [11],
log-conformation representation (LCR) [12], positive definiteness
preserving scheme (PDPS) [13] and square-root conformation rep-
resentation (SRCR) [14]. In the past, Jovani et. al [15] also presented
split-stress approach in reference to OpenFOAM which resembles
the BSD approach. This approach promotes numerical stability of
the algorithm by adding additional diffusive terms on both sides
of the momentum equation. While, other approaches promote
numerical stability of the algorithm, by preserving positive defi-
niteness of conformation tensor on discrete level [16].

As numerical stability of the algorithm is often considered
important, accuracy of the results are usually overlooked for vis-
coelastic fluids. This problem was first addressed by Alves et
al. [10], in which first-order upwind-differencing scheme (UDS)
and second-order numerical schemes were compared. Broadly,
accuracy of numerical solution depends heavily on the order of
convective schemes [17]. These schemes are classified according to
its polynomial relationship of control volume grid points. Numer-
ical schemes relying only on the immediate neighbouring control
volume grid point are referred as lower-order schemes. However,
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schemes relying on large number of control volume grid points
are mentioned as higher-order (HO) schemes. These unbounded
schemes though accurate, give rise to undue oscillations of nu-
merical solutions for convectiondominated flows. These unwanted
oscillations can be suppressed by imposing any of these conditions:
(1) total variation diminishing (TVD) [18], (2) convection bound-
edness criterion (CBC) [19]. To further improve the convergence
and stability of numerical schemes, a special class of bounded
schemes are used which are commonly known as high-resolution
schemes (HRS) [19–23]. Over the last decade, some works were
reported using HRS for viscoelastic fluids [6,15,16,24–26]. In broad
terms, these works assessed the numerical stability of algorithm
for different Deborah numbers. Also, these studies are limited to
low shearing flows or creeping flows. Consequently, insufficient
information is available on the numerical stability of high shearing
flows. This article therefore presents a study of high shearing
flows using the existing viscoelastic fluid flow solver [15] and
HRS, wherein elasticity number is varied, in order to assess the
numerical stability of HRS. In the present context of this paper,
HRS are implemented using the blending factor (γ ) method [21]
in OpenFOAM.

The article is presented as follows: The governing equations for
isothermal, incompressible and viscoelastic fluid are detailed in
Sect. 2.1, followed by a brief description of BSD approach, numer-
ical discretization and numerical algorithm in Sects. 2.2, 2.3 and
2.4, respectively. In Sect. 2.3, an overview of normalized variable
approach and HRS are presented. Later in Sect. 3, flow geometry
and mesh characteristics of planar contraction is outlined. There-
after, under the results and discussion section, a comparative study
of undue oscillations of flow variable profiles for HRS are detailed
and assessment of numerical stability of HRS for varied elasticity
number (E) are also presented, respectively. Finally, conclusions
are reported based on these results which details the numerical
stability of HRS in reference to E.

2. Numerical methodology

2.1. Governing equations

The governingmass andmomentumconservation equations for
isothermal, incompressible and viscoelastic fluid in vector form are
written as:

∇ · u = 0, (1)
∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · τ, (2)

whereu refers to the velocity vector,ρ refers to the density, p refers
to the pressure and τ refers to the total stress. This total stress can
be decomposed into viscous and elastic parts:

τ = τS + τP, (3)

where τS denotes the solvent (viscous) contribution and τP denotes
the polymeric (elastic) contribution. The viscous term τS is further
detailed as under:

τS = ηS
[
∇u + (∇u)T

]
. (4)

In this equation, ηS refers to the solvent viscosity. And, the
polymeric term τP referred in Eq. (3), depends upon the viscoelas-
tic fluid model. As the simplest viscoelastic models (UCM and
Oldroyd-B) does not predict the shear-thinning characteristics of
the fluid, so the single-mode Giesekus model [27] is being consid-
ered for formulation of constitutive equation.Moreover, thismodel
enables decent prediction of first and second stress differences for
the mobility factor α in the range of 0 < α < 0.5.

τP + λ
∇

τP + α
λ

ηP
(τP · τP) = ηP

[
∇u + (∇u)T

]
, (5)

where ηP represents the polymeric contribution of shear viscosity,
λ represents the relaxation time, α represents the mobility factor
and (τP · τP) represents the non-linear term, which corresponds
to qualitative description of viscoelastic properties [27–29]. And,
∇

τP refers to the upper convected derivative which is defined as
under [30]:

∇

τP =
DτP

Dt
− (∇u)T · τP − τP · ∇u. (6)

By substituting Eq. (6) in Eq. (5), following constitutive equation
is obtained:
τP

λ
+

δτP

δt
+ ∇ · (uτP) +

α

ηP
(τP · τP)

=
ηP

λ

[
∇u + (∇u)T

]
+ (∇u)T · τP + τP · ∇u. (7)

Thus, by substituting Eqs. (3), (4) and (7) into Eq. (2), give rise
to the complete governing momentum equation for viscoelastic
fluids.
∂ (ρu)

∂t
+ ∇ · (ρuu) − ∇ · ηS

[
∇u + (∇u)T

]
= −∇p + ∇ · τP. (8)

These equations though complete in all aspects, are subjected
to the loss of numerical stability when solvent viscosity (ηS ≈ 0)
reduces to negligibly small value. To overcome this shortcoming,
both-side-diffusion (BSD) approach is considered in the present
study [11].

2.2. Both-side-diffusion approach

In momentum equation, non-linear hyperbolic stress term (τP)
is calculated based on the constitutive equation. When ηS → 0,
elliptic diffusive termon the left-hand-side (LHS) of Eq. (8), reduces
to zero. This absence of an explicit diffusive term makes these
equations difficult to converge for high shearing flows. In order to
overcome this limitation, an additional diffusion term is added on
both sides of momentum equation. Thus, Eq. (8) changes to:
∂ (ρu)

∂t
+ ∇ · (ρuu) − ∇ · (ηS + ηP)

[
∇u + (∇u)T

]
= −∇p − ∇ · ηP

[
∇u + (∇u)T

]
+ ∇ · τP. (9)

This approach of adding diffusive terms is commonly referred
as BSD approach. In above equation, all terms on the LHS are
implicitly treated and remaining right-hand-side (RHS) terms are
explicitly added as a source. In case of numerical convergence,
these added terms cancel each other.

2.3. Numerical discretization

In this section, the governing flow equation (referred in Eq. (9))
are integrated over a control volume and gauss divergence theo-
rem is applied over it, to give a set of discretized equations [17].
In this equation, unsteady, time-dependent terms are discretized
using the Crank Nicolson scheme and convective terms of mo-
mentum and constitutive equations are discretized using the high
resolution scheme (HRS). While, remaining terms are discretized
using the central difference scheme. All flow variables are stored
using the non-staggered, collocated grid arrangement of Open-
FOAM. And localize normalized variable approach [21] is being
considered for formulation of HRS.

2.3.1. Normalized variable approach
Figure 1 shows the actual plot of convected variables and dis-

tances of the control volume, along positive flow direction. These
variables and distances are normalized using the localize normal-
ized variable approach for any arbitrary control volume mesh.
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