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a b s t r a c t

We adapt a swarm-intelligence-based optimization method (the artificial bee colony algorithm, ABC) to
enhance its parallel scaling properties and to improve the escaping behavior from deep local minima.
Specifically, we apply the approach to the geometry optimization of Lennard-Jones clusters. We illustrate
the performance and the scaling properties of the parallelization scheme for several system sizes (5–20
particles). Our main findings are specific recommendations for ranges of the parameters of the ABC algo-
rithmwhich yieldmaximal performance for Lennard-Jones clusters andMorse clusters. The suggested pa-
rameter ranges for these different interaction potentials turn out to be very similar; thus, we believe that
our reported values are fairly general for the ABC algorithm applied to chemical optimization problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Structure optimization has been a matter of interest for chemi-
cal physics and physical chemistry [1–7], as the equilibrium struc-
ture of a system is most important for describing the physical
and chemical properties [2]. In particular, molecular clusters have
been studied in detail [3,8–18]. Even for the most simple interac-
tion potentials, the potential energy surface (PES) for clusters with
more than four atoms is highly complicated and exhibits multi-
ple non-connected minima. As the global minima of these cluster
types cannot be found analytically, various methods have been de-
veloped and applied: artificial bee colony [19–22], basin-hopping
[23,12,24], dynamic lattice search [25], genetic algorithm [26,27],
Monte Carlo search [28], parallel tempering [29], particle swarm
optimization [21,30], simulated annealing [21,31–33], swarm in-
telligence [34], tabu search [35–37] and minima hopping [38],
which can be considered to be themost commonapproach for clus-
ter optimization.

The artificial bee colony (ABC) algorithm has been used for
various optimization problems from chemical physics [39,40], en-
gineering [41,42], and computer science [43–46]. Recently, we pre-
sented a modification of the artificial bee colony (ABC) algorithm
for the optimization of molecular geometries [47].
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The main idea of the ABC algorithm is to search the PES using
a swarm intelligence approach. Several replications of a random
conformation, called foragers, are placed on the PES and search for
localminima. The computational resources are distributed dynam-
ically among these foragers based on their relative energies, such
that foragers in energetically favorable regions get more computa-
tional resources. This stochastic element is crucial for the perfor-
mance and efficiency of the ABC approach.

When applied to clusters, the scaling of the ABC algorithm is ex-
ponential w.r.t. to the cluster size. As large clusters are more inter-
esting, wewant to push the limit of the computationally accessible
search space. With increasing cluster size, the optimization is only
feasible with nearly optimal values for the internal parameters of
the algorithm, so an understanding of the parameters of the ABC al-
gorithm is vitally important. Therefore, we analyze the reaction of
the algorithm on parameter changes and derive a set of valid pa-
rameter ranges that both helps ensuring convergence in the first
place and yields good performance. For the parameter determina-
tion, we used the Lennard-Jones potential
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in reduced units, that is distances in σ and energies in ε. For
evaluation, we optimized cluster structures for both the Lennard-
Jones potential and theMorse potentialwith its range-determining
parameter a

EM = ε

i<j

[exp(2a(1 − rij/r0)) − 2 exp(a(1 − rij/r0))]. (2)
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As the global minima are well-known for the Lennard-Jones
and Morse potentials, it is easily possible to define a convergence
criterion based on known reference solutions. For applying the ABC
algorithm to problemswithout any known solution, we derive two
intrinsic convergence criteria from extensive statistics.

For larger clusters or more complex problems, the computa-
tional costs increase quickly, so an efficient parallelization strategy
ismandatory. As neither of the previous versions [47,19] of the ABC
algorithm is parallelized, this manuscript reports two paralleliza-
tion strategies and evaluate their impact on the convergence be-
havior.

The potential energy surface often exhibits narrow funnels that
are difficult to find by MD at finite temperatures. These funnels
may be of particular interest like, for example, misfolded non-
equilibrium structures in protein folding. For finite temperatures,
the Maxwell–Boltzmann-distribution in principle requires the
knowledge of all geometries, especially those with a minimum
energy such that the accordingMaxwell–Boltzmann factors can be
calculated. Therefore, having different methods at hand for finding
minimal energy conformations is desirable. In this paper, we use
molecular clusters with phenomenological potentials in order to
evaluate and tune the artificial bee colony algorithm.

The paper is divided into three main sections: Methods,
Results and Discussion. Each of which itself is divided into three
subsections on the targets of this paper: the suggested parameter
ranges, convergence criteria, and parallelization strategies. Finally,
the information on these separate parts is evaluated together with
respect to both limitations and capabilities.

2. Methods

2.1. Working principles

The ABC algorithm basically tries to find a point with lower
energy on the PES of a cluster by deriving candidate conformations
from the point with the lowest energy found so far, with an
additional stochastic component. Up to now, theABC algorithmhas
been tested on both purely mathematical test functions [48] and
cluster structures [47]. In both cases, the costs for the evaluation
of each candidate conformation are very small. In this paper,
we measure the computational costs by counting the number of
energy calculations for a given conformation, that is, the number
of single point calculations (SPC).

The total optimization process is divided into cycles [20]. Each
cycle begins with an employee bee phase and ends with an
onlooker bee phase, optionally followed by a scout bee phase. The
employee bees hold a candidate conformation and know about
the best solution of all candidate conformation they tested so far,
whereas the O onlooker bees have access to the information of
all employed bees. In the employee phase, each employee bee
derives a new candidate conformation either by generating a
totally random one or by choosing a point in the search space that
is inside a hypersphere centered around the current conformation
of the employed bee. In general, only if the new conformation has a
lower energy than the previous one, the employed bee adapts the
new position. If the employed bee discards a new positionmultiple
times in a row, the radius of the hypersphere, the current size level,
is halved. In the case an employed bee found no better position
for a certain period, it becomes a scout bee and is forcibly set to
a random point on the PES, where it becomes an employed bee
again. This scout step is important for the sampling efficiency of
the algorithm. After all employed bees have finished, the onlooker
phase starts: each onlooker bee selects one employed bee based
on a probability distribution defined by the energies of the current
worker conformations. In this way, employed bees with a lower
energy are preferred over thosewith higher energies. Each selected

employed bee searches for a newposition again. One employed bee
can be selected bymultiple onlooker bees. After all onlookers have
completed, the cycle is finished.

In our implementation, we use implicit onlookers. This means
that the onlooker bees aremodeled by allowing the employed bees
to perform another random local search step. In order to stress
this difference, we use the expression worker for the foragers,
disregarding whether they are currently used as employed bee,
onlooker bee or scout bee during the optimization process. In other
words, the number of workers W denotes the number of different
positions on the PES that is kept in memory at any time.

During the onlooker phase, the algorithm allows each worker i
of theW workers to perform another S(Wi) steps. The distribution
among the threads in the parallelized versions is given by S(Wi, Tj)
where Tj denotes the jth thread from t threads in total, so that

S(Wi) =

t
j=1

S(Wi, Tj) (3)

S(Ti) =

O
j=1

S(Wj, Ti). (4)

We assume t to be less than or equal to the number of available
parallel compute nodes.

2.2. Suggested parameter ranges

In principle, an optimal set of values for the free parameters of
the algorithm can be obtained for any cluster type (for example
Lennard-Jones [49], Morse [50], Tersoff [51,52], and TIP5P [53])
and cluster size [54,55]. However, these settings would only be
of interest for this particular application and would not be usable
in order to cope with other optimization problems. Therefore, we
focus on describing ranges for the algorithmic parameters. These
ranges are further referred to as suggested parameter ranges (SPR)
and are defined by two criteria: at least 90% of all N runs converge
and the average costs are not higher than the threshold of 110%
of the minimal average costs for this cluster. Although this tight
criterion introduces some special values like the data for e = 17 in
Fig. 3, it is helpful to determine the actual optimal parameter values
and supports the transferability of the suggested parameter ranges.

Determining these SPR is an optimization problem itself. There-
fore, we have chosen to apply the ABC algorithm to find these pa-
rameter ranges. For the target quantity that is to be optimized, we
average the computational cost for reproducing the knownoptimal
conformation overN ≃ 500 runswith a specific parameter set. Re-
garding the computational costs, Lennard-Jones clusters with five
to twenty atoms are used as reference solutions [56]. Using the
reduced unit representation of the Lennard-Jones potential guar-
antees validity of the results for all parametrizations of the
Lennard-Jones potential.

Starting from the best parameter set for each cluster size e,
five out of the six parameters are kept constant and the sixth one
is used for the rasterization of the local minimum in parameter
space. Again, each data point is calculated by averaging over N
optimization runs. The resulting data is smoothed in order to be
able to define a minimum from the noised information.

Fig. 1 illustrates the procedure of determining the SPR. First of
all, a parameter set has to be found by the master optimization
runs. Varying the number of onlookers leads to the raw data. As
each of the data points may vary in spite of the averaging, the raw
data is smoothed by calculating a Bézier curve, which in turn is
used for SPR determination.
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