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a b s t r a c t

A periodic datamining algorithm has been developed and used to extract distinct plasma fluctuations in
multichannel oscillatory timeseries data. The technique uses the Expectation Maximisation algorithm
to solve for the maximum likelihood estimates and cluster assignments of a mixture of multivariate
independent von Mises distributions (EM-VMM). The performance of the algorithm shows significant
benefits when compared to a periodic k-means algorithm and clustering using non-periodic techniques
on several artificial datasets and real experimental data. Additionally, a new technique for identifying
interesting features in multichannel oscillatory timeseries data is described (STFT-clustering). STFT-
clustering identifies the coincidence of spectral features overmost channels of amulti-channel array using
the averaged short time Fourier transform of the signals. These features are filtered using clustering to
remove noise. This method is particularly good at identifying weaker features and complements existing
methods of feature extraction. Results from applying the STFT-clustering and EM-VMM algorithm to the
extraction and clustering of plasma wave modes in the time series data from a helical magnetic probe
array on the H-1NF heliac are presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The identification and characterisation of plasma wave modes
as a function of machine and plasma parameters is a subject of
considerable interest for plasmamagnetic confinement devices. As
has been observedwithAlfvénwaves [1], high energy fusion alphas
or neutral beam injection ions can interact with these modes,
severely degrading their confinement and driving the modes to
large amplitude [2]. This causes significant problems such as
damage to the first wall [3], and may prevent fusion plasmas from
reaching ignition. Diagnostics such as arrays of magnetic probes
are critical for identifying and characterising the spectral and
spatial nature of thesemodes. These diagnostics are ‘‘always on’’ on
major experiments, generating extremely large databases of time-
series data which provides a perfect opportunity for knowledge
discovery using datamining techniques.

Data clustering, a recognised technique for unsupervised classi-
fication, has recently been applied to the field of plasma physics for
intelligent data retrieval from large fusion device databases [4–7]
and for the identification and classification of wave modes [8–10]
using non-periodic clustering algorithms.
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The techniques described in this paper address the problem of
dealingwith periodic data and can be applied tomany applications
where multichannel diagnostics produces periodic signals. Appli-
cations within plasma physics include interferometers, soft X-ray
arrays, arrays ofmagnetic probes and imaging diagnostics. For sim-
plicity we will focus on the application to magnetic probe signals
where the spatial information, such as mode numbers, is encoded
in the phase differences betweenmagnetic probe signals at the fre-
quency of the mode. These phase differences (∆ψ) are periodic,
(−π, π], causing problems with standard clustering techniques.
Additionally, the number of probes available is often quite large
giving rise to high dimensional data. These constraints require
the application of specialised clustering techniques. Two options
that have good memory scalability are a periodic version of the
k-means algorithm and expectationmaximisation (EM) usingmix-
tures of multivariate independent von Mises distributions (EM-
VMM). Minimal information is available in the literature about the
application of EM to multivariate independent von Mises distri-
butions with more than 3 variables, so this is described in detail
in Section 4. Previously [8–10], clustering on timeseries data was
performed using standard non-periodic clustering techniques by
trigonometrically encoding the data (sin(∆ψ) and cos(∆ψ)). This
method has several drawbacks including artificially creating struc-
ture, encoding systematic errors in the data, and doubling the di-
mensionality of the problem.
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Fig. 1. (a) An overview of the H-1NF heliac including a subset of the equilibrium
magnetic field coils (poloidal field coil (PFC), toroidal field coils (TFC)), the poloidal
Mirnov arrays (PMA1, PMA2) and the helical Mirnov array (HMA). The surface
colour represents the equilibrium magnetic field strength on the last closed flux
surface. (b) Examples of the timeseries signals from the probes in the HMA, red is
the raw signal and black is a bandpass filtered signal. The time delay in the signal
between channels can be converted to a phase difference which represents the
spatial structure of the mode. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Using several artificial datasets, we find that the EM-VMMalgo-
rithm performs better than the other available algorithms without
incurring a significant computational cost. As a case study we suc-
cessfully apply the EM-VMMalgorithm to real data from theH-1NF
heliac [11].

H-1NF is a three field-period helical axis stellarator with major
radius R = 1 m and average minor radius ⟨r⟩ ≈ 0.2 m. The de-
sign of themachine allows access to an extensive range ofmagnetic
configurations, making H-1NF well-suited to explore the relation-
ship between plasma behaviour and magnetic configuration [12].
A variety of magnetic fluctuations have been observed with a re-
cently installed helical Mirnov array (HMA) [13], which provides
our experimental datasets in this paper. An overview picture of H-
1NF including a subset of magnetic field coils and magnetic probe
arrays aswell as an example of the time trace signals from theHMA
when a strong mode is present are shown in Fig. 1(a) and (b) re-
spectively.

Additionally, a pre-processing technique for more robust iden-
tification of fluctuations in multichannel oscillatory timeseries
data is described. The technique involves a combination of singular
value decomposition (SVD) analysis, and an averaged short time
Fourier transform followed by clustering (STFT-clustering). The
STFT-clustering technique involves finding spectral features using
the averaged short time Fourier transform followed by preliminary
periodic clustering analysis to identify interesting features.

This paper is organised as follows: Section 2 provides an
overviewof the feature extraction and clustering process. Section 3
describes the STFT-clustering technique and how combining this
with the SVD technique identifies features other techniques miss.
Section 4 describes in detail how to apply the expectation max-
imisation algorithm to a mixture model of multivariate indepen-
dent von Mises distributions. Section 5 compares the results of
applying the periodic and standard clustering techniques to ar-
tificial data, and Section 6 shows results from applying STFT-
clustering and EM-VMM to experimental data from the H-1NF
heliac. Finally we provide some conclusions in Section 7.

2. Overview of the feature extraction and clustering process

For our application, we are ultimately interested in the physical
nature of instabilities in plasmas, in particular, their dispersion re-
lations. This information allows us to identify measures that can
be taken to prevent these instabilities from growing to destruc-
tive amplitudes, and provides information on possible ways to use
them beneficially.

Many different types of instabilities give rise to observable fluc-
tuations in a magnetised toroidal plasma, for example (n = 4,
m = −3) global Alfvén eigenmode (GAE), (5,−4) GAE, etc. [1].
Their existence and aspects of their behaviour such as frequency
depend on the experimental conditions and plasma parameters
such as magnetic field strength and its rotational transform pro-
file and the plasma density. For clustering purposes we assume
the spatial structure of a fluctuation instance is what defines it and
makes it unique from other fluctuations. Unless the plasma equi-
librium is very steady, if a fluctuation exists in a shot it will have
different frequencies at different times depending on the plasma
parameters such as density andmagnetic field strength. Therefore,
frequency is not a good identifier of a particular fluctuation and
is not used in the clustering process. This and other attributes of
each fluctuation instance (time, plasma parameters etc.) are only
used later in interpreting the nature of each cluster. Each cluster
represents a collection of measurements of the same type of fluc-
tuation that have existed during different experiment conditions
which together provide a great deal of information important for
interpretation of the underlying physical phenomena.

An overview of the feature extraction, clustering, and analysis
process is shown in Fig. 2. The measurements available to iden-
tify these instabilities generally consist of timeseries data from ar-
rays of experimental diagnostics such asmagnetic pickupprobes or
multichannel interferometers. In this paper we will focus on mag-
netic probes but the same technique has been successfully applied
to interferometer data.

The magnetic probe signal from a mode that consists primar-
ily of one component such as a global Alfvén eigenmode [1] can be
described as follows:

Vi ∝ cos(nφB,i + mθB,i − ωt). (1)

Here, ω is the mode frequency, m represents the poloidal mode
number, n the toroidal mode number, i an index in the toroidal ar-
ray of probes, and, φB,i and θB,i are the toroidal and poloidal Boozer
angles [14,15] of the ith probe, respectively. Examples of the time
trace signals from amagnetic probe array due to amode are shown
in Fig. 1(b).

From Eq. (1) we can see that spatial information we are inter-
ested in (n and m) is contained in the phase structure of the sig-
nal at the frequency of the perturbation (ω). Therefore, the first
task is to identify the frequencies of the perturbations over discrete
time intervals, and extract the phase structure of the signal at those
frequencies for each of the magnetic probes in the array. To make
the data independent of the choice of time origin, we calculate the
phase difference between successive coils in the array. This forms a
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