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ABSTRACT This paper addresses the estimation of large-dimensional covariance matrices under both
normal and nonnormal distributions. The shrinkage estimators are constructed by convexly combining the
sample covariance matrix and a structured target matrix. The optimal oracle shrinkage intensity is obtained
analytically for any prespecified target in a class of matrices which includes various structured matrices such
as banding, thresholding, diagonal, and block diagonal matrices. After deriving the unbiased and consistent
estimates of some quantities in the oracle intensity involving unknown population covariance matrix,
two classes of available optimal intensities are proposed under normality and nonnormality, respectively,
by plug-in technique. For the target matrix with unknown parameter such as bandwidth in banded target,
an analytic estimate of unknown parameter is provided. Both the numerical simulations and applications to
signal processing and discriminant analysis show the comparable performance of the proposed estimators
for large-dimensional data.

INDEX TERMS Covariance matrix, structured target matrix, large dimension, shrinkage estimation.

I. INTRODUCTION
Estimation of population covariance matrix from a random
sample has attracted a lot of attentions because of the fun-
damental role of covariance matrices in many science and
technology areas such as statistical inference [1], signal
processing [2], [3], communication [4], biometrics [5] and
financial economics [6]. Various realistic applications usually
require a covariance matrix estimator to be not only invertible
but also well-conditioned. Let (x1, . . . , xn) be an independent
and identically distributed (i.i.d.) sample of size n from a
p-dimensional population with mean zero and covariance 6,
the sample covariance matrix (SCM)

S = (sij)p×p =
1
n

n∑
i=1

xixTi

is widely adopted as a classical estimator of 6, which has
some important statistical properties provided in the classi-
cal statistics for large sample cases. As the high- or large-
dimensional data are collected in various ways in the practical
applications, the dimensionality becomes non-negligible, but
the traditional methods directly utilizing the SCM as the

estimate of the population covariance matrix often perform
very poorly. In fact, the SCM S can not anymore be con-
sidered as a good estimate of the true covariance matrix
6 when the dimension p is large compared to the sam-
ple size n, and even singular when p > n. For large-
dimensional covariance matrices, even if n > p, the
SCM S is typically not well-conditioned. Some researches,
e.g., [7]–[10] reveal some important features of random
matrices such as the SCMusing randommatrix theory. Partic-
ularly, the famousMarčenko–Pastur law describes the asymp-
totic behavior, which depends on the ratio of the dimension
p and the sample size n, of eigenvalues of S as large random
matrix. However, the high- or large-dimensional covariance
estimation is known to still be a difficult problem, especially
in the ‘‘large p small n’’ setting. In recent years, a lot of atten-
tions have been devoted to looking for alternative estimators
of the SCM in high- or large-dimensional background and
many improved estimators of covariancematrix are proposed.
One can refer to [11]–[29] and references therein.

The shrinkage estimation is a popular and efficient
approach which reduces the mean squared error (MSE)
of the estimate by convexly combining the SCM S and
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a prespecified target matrix. In [13], the identity matrix
Ip multiplied by a scalar p−1tr(S) is introduced as target
matrix and a distribution-free consistent estimator (named
LW estimator) is proposed to approximate the oracle esti-
mate. The LW estimator shrinks the eigenvalues of the SCM
towards their grand mean, and is asymptotically optimal in
the sense of minimizing the expected quadratic loss function
as both the sample size n and the dimension p go to infinity
together but the ratio p/n remaining bounded. For normal
cases, in [17], the oracle approximating shrinkage (OAS)
estimator and the Rao-Blackwell Ledoit-Wolf (RBLW) esti-
mator (named owing to apply the well-knownRao–Blackwell
theorem to the LW method) are proposed in which the latter
improves the LW estimator. In [21], the diagonal target matrix
DS = diag(s11, . . . , spp) taking the diagonal elements of S
is explored and a corresponding shrinkage estimator under
normality is suggested. Correspondingly, the shrinkage esti-
mate with such diagonal target is extended to the non-normal
cases in [28]. Instead of the diagonal DS , in [22], a tapering
matrix, proposed in [30], is selected as the target, and then a
shrinkage-to-tapering oracle approximating (STOA) estima-
tor is suggestedwhich inherits the advantages of both tapering
and shrinkage estimators. Note that the target matrix DS can
be thought as a special case of tapering target with band-
width 0. More recently, some researchers consider two tar-
gets as candidates of shrinkage targets and proposed double
shrinkage estimators as [28]. A multi-target shrinkage esti-
mation by optimization under non-distribution assumption is
proposed in [31]. In [32], an iterative method similar to the
one in [22] is proposed to approximate the oracle estimator,
especially the convergency is proved and a closed-form limit
is obtained. Also, there are other shrinkage strategies and their
applications in [25]–[27], [33], and [34].

The main contributions of this paper are as follows:
1) Considering the variousness and importance of target

matrices in shrinkage covariance matrix estimation, we
introduce a class of targets which includes a number
of structured matrices such as banding, thresholding,
diagonal and block diagonal matrices. This matrix class
is first considered in [32] only for normal distribu-
tion, however, in this paper we devote to tackling with
covariance estimation for not only normal but also non-
normal population distributions. We derive analytically
a class of optimal oracle shrinkage estimators in the
sense of minimizing the expected quadratic loss under
both normality and non-normality.

2) The plug-in strategy is adopted to estimate the ora-
cle shrinkage intensity and the population covariance
matrix for any given target in the aforementioned
matrix class. This approach is different from the iter-
ative approaches proposed in [17], [22], and [32]
that are difficult to derive the limit of iterations and
even if prove their convergence for general distri-
butions. In this paper, we provide the unbiased and
consistent estimators of some functions of unknown
population covariance matrix in the optimal oracle

shrinkage intensity under normality and non-normality.
The well-known estimators in [35] and [36] are the
special cases of our proposed estimators when the pop-
ulation mean is zero. Moreover, by plugging the above
unbiased and consistent estimators into the related
quantities in oracle shrinkage intensity, we obtain
a set of shrinkage estimators for a class of struc-
tured target matrices in both normal and non-normal
distributions.

3) For the banded target with unknown bandwidth, which
emerges in many applications such as signal process-
ing and time series analysis, we suggest a paramet-
ric method and derive analytically the expression of
estimation risk for choosing the optimal bandwidth.
Therefore, some non-parametric methods such as cross
validation suffering from significantly higher compu-
tational complexity are avoided.

4) We evaluate the proposed covariance matrix estima-
tion approaches via some simulation experiments and
two applications to the adaptive beamforming and the
discriminant analysis of real gene expression data.
The results show that the comparable performance of
the proposed estimators with the existing estimators
for large-dimension cases under both normality and
non-normality.

This paper is organized as follows. Section II introduces
the class of target matrices and formulates the shrinkage
estimation for large covariance matrices. The optimal oracle
intensity and the related available estimators under normal
and non-normal distributions are proposed in Section III
and Section IV respectively. After deriving an analytical
risk for banded target, in Section V, a parametric method
is proposed to obtain the optimal bandwidth for banded
target with unknown bandwidth. In Section VI, the per-
formance of the proposed shrinkage estimators is investi-
gated via some numerical simulations and two applications.
Some conclusions and discussions are given in Section VII.
Proofs of some mathematical results are provided in the
appendix.

NOTATIONS
The transpose and Hermitian transpose of a vector or matrix
are indicated by the superscripts T and H respectively. For
a matrix A, tr(A) and ‖A‖ represent its trace and Frobenius
norm respectively. A◦Bmeans the Hadamard (element-wise)
product of two matrices A and B. The notation sign(·) denotes
the sign of a quantity with sign(0) = 0. The symbols 1 and I
denote the vector having all entries 1 and the identity matrix
with appropriate dimension respectively. The operation E(·)
denotes the mathematical expectation of random variable and
→

p means convergence in probability.

II. FORMULATION AND PRELIMINARIES
Let S be the SCM of n independent p-dimensional ran-
dom vectors from population with mean zero and covari-
ance matrix 6. We consider a linear shrinkage estimator

VOLUME 6, 2018 2159



Download English Version:

https://daneshyari.com/en/article/5020034

Download Persian Version:

https://daneshyari.com/article/5020034

Daneshyari.com

https://daneshyari.com/en/article/5020034
https://daneshyari.com/article/5020034
https://daneshyari.com

