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a  b  s  t  r  a  c  t

Additive  manufacturing  (AM)  is  a set  of  emerging  technologies  that can  produce  physical  objects  with
complex  geometrical  shapes  directly  from  a  digital  model.  With  many  unique  capabilities,  such  as  design
freedom,  it  has  recently  gained  increasing  attention  from  researchers,  practitioners,  and  public  media.
However,  achieving  the  full potential  of  AM is hampered  by  many  challenges,  including  the  lack  of  predic-
tive  models  that  correlate  processing  parameters  with  the  properties  of  the processed  part.  We  develop  a
Gaussian  process-based  predictive  model  for the learning  and  prediction  of  the  porosity  in metallic  parts
produced  using  selective  laser  melting  (SLM – a laser-based  AM  process).  More  specifically,  a spatial
Gaussian  process  regression  model  is first  developed  to model  part porosity  as a function  of  SLM  process
parameters.  Next,  a Bayesian  inference  framework  is  used  to estimate  the statistical  model  parameters,
and  the  porosity  of  the part  at any  given  setting  is  predicted  using  the  Kriging  method.  A case  study  is
conducted  to  validate  this  predictive  framework  through  predicting  the  porosity  of  17-4  PH stainless
steel  manufacturing  on a ProX  100  selective  laser melting  system.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Additive manufacturing (AM) has recently gained increased
attention by researchers, practitioners, and even public media
[1–3]. It is regarded by some as a potential game changer, espe-
cially with the advent of AM technologies that can process advanced
metallic materials and alloys such as stainless steel [4–6], Ti-6Al-4V
[7,8], and nickel-based alloys [9]. In contrast to the limited applica-
tion of polymer-based AM in producing visualization or functional
prototypes to accelerate product development in the early 1980s,
metal-based AM is now used to produce parts for direct use such as
the fuel nozzle that GE Aviation will use in their LEAP engine [10,11],
Lockheed’s blead air leak detector [12], and biomedical cranial and
hip implants [13–15].

There are many obstacles that still hamper the widespread
adoption of metal-based AM as a mainstream manufacturing
method. These include for example part quality, repeatability, and
the lack of material and process standards, among others. Many
recent road mapping efforts have been conducted by academic and
industrial stakeholders to identify technological barriers, desired
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capabilities, and research efforts needed to unlock the opportuni-
ties that AM has to offer (see for example the roadmap for additive
manufacturing [16] and NIST’s measurement science roadmap for
metal-based additive manufacturing [17]). These efforts have been
instrumental in providing guidance and vision for researchers, and
their impact on the advancement of AM technologies is starting to
be realized [18].

One of the missing and highly desired capabilities, aligned both
with the vision of these road mapping efforts as well as indus-
trial needs, is providing modeling and simulation capabilities that
decrease the need for real-world testing and provides designers
with predictive capabilities to optimize part and process design
[17, p. 35]. This is important due to the high costs associated with
experiments and testing needed to achieve the desired part prop-
erties. It is further complicated by the fact that most metal-based
AM technologies involve many process parameters and complex
physical transformations that influence the properties of the final
part.

In this work, we  develop a predictive modeling framework based
on Gaussian process (GP) models to predict the resulting density (or
porosity) in parts manufactured using selective laser melting (SLM)
as a function of the processing parameters. SLM is a laser-based
metal AM process that produces physical parts directly from a com-
puter digital model, layer upon layer, by selective fusing metallic
powder using a high energy laser beam [19]. Porosity is a common
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defect that has been reported in SLM parts, resulting in compro-
mising the mechanical properties and performance of the part. It is
well established that excessive concentration of pores in the part’s
structure could reduce tensile strength, ductility and fatigue prop-
erties [20]. Multiple mechanisms contribute to porosity in SLM
parts. These include shrinkage, gas entrapment during solidifica-
tion [21,22], and adhesion of partially molten particles to surfaces
between layers [23]. Additionally, depending on the wettability,
capillary forces and surface tension of the melt pool, a defect known
as “balling” can occur which results in uneven subsequent powder
layers and, consequently, pores upon processing of the material
[24].

Selection of multiple processing parameters such as laser power,
scanning speed, and layer thickness [25] impact part porosity. The
majority of existing efforts rely on extensive round-robin testing for
selecting parameter combinations that maximize part density and
minimize porosity. In contrast, we develop a systematic approach
that enables accurate prediction of porosity at any given parame-
ter combination while keeping the number of costly experiments
to a minimum. In particular, we develop a GP regression model
to express part porosity as a flexible stochastic function of SLM
processing parameters, and use a Bayesian inference procedure to
estimate the model parameters and subsequently predict porosity.

Gaussian process models have been widely used in Bayesian
nonparametric statistics to specify prior distributions on function
spaces due to their desirable mathematical and computational
properties, and ability to incorporate a wide range of smoothness
assumptions [26]. Examples include spatial modeling [27], com-
puter model emulation [28,29], image analysis [30], and supervised
classification and prediction in machine learning [31]. The popu-
larity of such processes are mainly due to their many attractive
mathematical and computational properties, and their flexibility
and richness in modeling dependence among data observed in
space. Our work is among the first to introduce spatial GP models
to addressing the modeling and prediction of metal-based AM pro-
cesses. We  validate our methodology using real-world data that we
acquired from building 17-4 PH stainless steel test coupons using
SLM.

The paper is organized as follows: Section 2 surveys relevant
literature related to metal-based AM and statistics, with empha-
sis on works that studied the manufacturing of 17-4 PH stainless
steel. In Section 3, we define the problem and formulate a GP regres-
sion model for predicting porosity in metallic parts produced using
SLM. We  then present a Bayesian inference method for estimat-
ing the parameters of this model, and use these estimated model
parameters for prediction in Sections 4 and 5, respectively. A real-
world case study is conducted in Section 6 to validate the proposed
predictive framework using data from the production of 17-4 PH
stainless steel samples on a commercial SLM system housed in the
authors’ laboratory. Finally, concluding remarks and directions for
future research are outlined in Section 7.

2. Literature review

Additive manufacturing (AM) technologies are currently catego-
rized into 7 distinct categories according to the material being used
and the mechanism with which each layer is produced [32]. The two
most common process categories used for producing metallic parts
are powder bed fusion (PBF) and directed energy deposition (DED)
processes. This is primarily due to their ability of producing dense
metallic parts without the need for significant post processing [19].
Both categories share the common aspect that parts are produced
by melting metallic powder using an high energy source (com-
monly a laser or electron beam). The key difference between them
is the powder feed mechanism: in PBF, the energy source melts

powder placed in a powder bed, whereas in DED the powder is
coaxially fed with the energy source. Our focus in this work is on
selective laser melting (SLM) which is a class of PBF processes that
fuses metallic powder using a laser beam. Excellent overviews and
summaries of different AM process categories and technologies are
provided by Wohlers [10] and Gibson et al. [23].

The body of the literature on SLM is quite large, studying the
fabrication of different metallic materials such titanium alloys
[7,33,34], aluminum alloys [35–37], and nickel alloys [38,9,39]. We
consider the SLM of steel in this study, which has been frequently
studied. Some of the investigated steel alloys include austenitic
316L stainless steel [40,6,41,42], H13 tool steel [43,44], and marag-
ing steel [45,46]. Our choice of precipitation hardening martensitic
steel (17-4 PH) for this study has two main motivations: first, this
alloy has wide used in industrial applications that require a combi-
nation of high strength and a moderate level of corrosion resistance
[47,48]; and second, it is commercially available in gas atomized
powder form for SLM applications.

Most of the works on the SLM of 17-4 PH steel investigate
its manufacturability and analyze the properties of the fabricated
parts. For example, Facchini et al. [49] analyze the microstructure
and Kumar and Kruth [50] study the wear behavior of SLM-
fabricated 17-4 steel parts. Murr et al. [51] provide a good review on
efforts in processing 17-4 PH steel and other metallic alloys using
laser- and electron beam-based AM,  with a focus on reporting the
microstructure and phase structures.

Very few works follow systematic approaches for assessing
the impact of SLM process parameters on the properties of the
end part. One example is the work by Averyanova et al. [4] who
use a fractional factorial approach to assess the impact of pro-
cess and material parameters on the dimensional stability and
surface roughness of a single layer 17-4 PH. The effect of the opti-
mized process parameters on the microstructure of the final part
is subsequently studied in [52]. Spierings et al. [53] employ full-
factorial experimental design examine the effect of energy density
on the density and elasticity of 17-4 PH specimens. Gu et al. [54]
and Averyanova and Bertrand [55] also study the effect of pro-
cess parameters on the density of 17-4 PH specimens, however the
values of process parameters were arbitrarily selected.

In contrast to the above works, we  construct a predictive model
that provides a systematic framework for predicting the poros-
ity (or density) of SLM-fabricated 17-4 PH steel motivated from
Gaussian process models widely used in spatial statistics.

Spatial statistics started as an ad-hoc field with few works dated
as back as the early 1900s, however strong theoretical research has
been developed since the 1950s, with applications focused on min-
ing, agriculture and forestry [56]. It experienced significant growth
over the past two  decades particularly with the development of
low-cost high-speed computing [56,57], extending its application
domains into other fields such as healthcare, social and environ-
mental geography, oil and gas exploration, fisheries and animal
migration, socioeconomics and econometrics, among others [58].
To date, fewer works use spatial models in manufacturing appli-
cations. Yang and Jackman [59] scan points on the surface of a
workpiece and use a spatial model to predict and estimate form
(geometry) errors. Colosimo et al. [60] propose a process control
method that combines control charts with spatial correlated noise,
and apply this method to monitor the roundness geometrical tol-
erance for parts produced by turning. A similar hybrid approach
encompassing spatial information with control charts is used by
Collica et al. [61] for quality control in the manufacturing of inte-
grated circuits. Hsu and Chien [62] develop a data mining approach
that integrates spatial statistics with adaptive neural networks to
identify patterns of defects in semiconductor manufacturing. The
authors use a case study to demonstrate their approach can be used
to provide information on production defects and their root-causes.
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