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a  b  s  t  r  a  c  t

This  paper  presents  an  end-to-end  design  process  for compliance  minimization-based  topological  opti-
mization  of  cellular  structures  through  to  the realization  of  a  final  printed  product.  Homogenization  is
used  to derive  properties  representative  of  these  structures  through  direct  numerical  simulation  of unit
cell models.  The  resulting  homogenized  properties  are  then  used  assuming  uniform  distribution  of  the
cellular  structure  to compute  the  macroscale  structure.  Results  are  presented  that  illustrate  the fine-scale
stresses  developed  in  the  macroscale  optimized  part  as well  as  the  effect  that  fine-scale  structure  has  on
the  optimized  topology.  Finally,  a new  method  is presented  for  generating  an  STL  representation  of  the
optimized  part  that  is  suitable  for printing  on typical  industrial  machines.  Quite  fine  cellular  structures
are  shown  to  be possible  using  this  method.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Interest in cellular materials continues to grow in lightweight
applications as technologies to realize these materials become
more reliable, repeatable and of lower cost. Besides the weight
savings inherent in these materials due to their low density (rel-
ative to the solid base material), cellular structures can also exhibit
good dynamic performance, defect tolerance, corrosion and ther-
mal  resistance and lower cost than traditional materials [1–3].

Following the taxonomy of Wadley [4] cellular structures fall
into one of two broad categories; stochastic and periodic. Stochas-
tic structures are those where the cellular structure is randomly
distributed. While this cellular structure is among the easiest
to manufacture using traditional techniques (e.g. foaming and
sintering), its random layout and varying density make control
of mechanical properties (and hence maximizing performance)
difficult [4]. Better control of material properties are possible
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with periodic structures but their fabrication with traditional
approaches is limited.

Periodic structures may also be amenable to numerical analy-
sis at the scale of the part as homogenization techniques assume
a regular or nearly regular structure at some scale [1]. Specifically,
periodic cellular structures can be characterized by Representative
Volume Elements (RVEs) that capture the repeated structure evi-
dent in the material. When the RVE is of a size much smaller than the
part they compose (i.e., when “scale separation” exists), homoge-
nization theory can be employed to provide representative material
properties of the RVE that may  be used to accurately describe the
macroscale response of the structure.

Although conventional manufacturing approaches are available
and dominate the creation of these cellular materials, their use
becomes problematic for more complex cell geometries such as
lattice structures [5]. These manufacturing limitations may  be over-
come by using Additive Manufacturing (AM) techniques. Unlike
traditional subtractive processes, AM approaches “print” parts
from, for example, powders or droplets that are fused together
with thermal or other process. In this way, AM can build parts that
are nearly impossible to realize with traditional subtractive pro-
cesses due to (for example) geometric and material complexities
accessible by these methods [6].

Additive manufacturing’s promise of building novel parts
is complemented by the Topology Optimization (TO) design
paradigm. Topology optimization is a mathematical approach to
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optimize a part design given a set of constraints (e.g. loads, bound-
ary conditions, mass and volume budget) [7,8]. Designs realized
from TO are often non-intuitive with qualities that make them real-
izable only with additive manufacturing. The coupling of AM with
TO has begun to realize significant attention [9] and examples of
research in the area include [10,11,5,12].

Approaches to multi-scale topological optimization can be
broadly classified as concurrent and non-concurrent. In the non-
concurrent approach either the structural (macrostructure) or
microstructure is optimized [5]. In the concurrent approach both
macro- and microstructure are “designed” together to get a final
part [13]. In this paper we  consider the non-concurrent approach,
selecting a (spatially) uniform microstructure and optimizing the
macrostructure topology. Although the part design is based on the
homogenized response, the method does permit examination of
the total stresses (i.e. those that account for RVE stress raisers) in
the final optimized geometries.

This paper begins with a discussion of homogenization theory
and the application of homogenization to the linear elastostatic
problem. This is followed by a description of the topological opti-
mization algorithms used here. Note that a range of topological
optimization algorithms are available for the compliance mini-
mization problem including gradient-based methods such as Solid
Isotropic Material with Penalization (SIMP), and level set tech-
niques and evolutionary methods including the ESO and BESO
approaches to name a few [7,8]. Here we choose the SIMP approach
and describe some of the important aspects of our implementa-
tion. This discussion is followed by a description of our process for
mapping the optimized topology to a faceted representation that
incorporates the cellular structure explicitly (including a review of
the current state of the art in this area). This leads directly to an STL
file that may  be exported to a 3D printer for production without fur-
ther user intervention. Next, we present an example that illustrates
the effect of fine-scale features on the macroscale design and total
stress (i.e., micro- and macroscale). Finally, we present an example
that demonstrates our process to design realizable cellular parts.

2. Problem formulation

In the linear elastostatic setting, the expression for static equi-
librium (conservation of momentum) is given in terms of the
displacement, uk(x), and elasticity tensor, Eijkl, as:
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is the applied traction, uo
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is the displacement constraint,
n̂j is the boundary surface normal, ∂�u ∪ ∂�t = ∂�,  and ∂� is the
boundary of the domain, �.

In Sections 2.1 and 2.2 below, a brief review of homogenization
theory and the numerical solution of the resulting equations is pro-
vided. For a more thorough treatment of homogenization theory in
the context of topology optimization, see Hassani and Hinton [1].

2.1. Homogenization

In periodic or nearly periodic heterogeneous materials the elas-
ticity tensor is assumed to vary with the period of the structure, �.
The goal of homogenization is to (a) determine effective or homoge-
nized material constants that account for this microscale variation,
and (b) provide a means for examining the local or microscopic
fields in component scale analysis [14,1]. The approach begins with

an asymptotic expansion of the dependent variable in the period of
the structure, �,
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Superscripts on the displacements, uk, are indices, not exponents.
The material response is assumed to be Y-periodic, where Y is the
domain of the periodic cell. Defining the local variable, y = x/�, and
recasting Eq. (1) in terms of the expansion yields

A�
ikuk = 0 (5)

where A�
ik is the differential operator:
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E�
ijkl

(y) is the periodic elasticity tensor defined on the periodic
domain, and the subscript ’s’ indicates a symmetric gradient, i.e.,
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Expanding Eq. (5) yields the more convenient form,
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in terms of the differential operators
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Eq. (5) is satisfied if terms on powers of � are equal to zero, i.e.,
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Eqs. (12)–(14) correspond to the lowest order terms, �−2, �−1, and
�0, respectively. Since we  are concerned with the limit as � → 0, any
higher order terms are neglected.

Eq. (12) requires u0
k

be constant in y, i.e., u0
k
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k
(x), so Eq. (13)

can be reduced to
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At this point we  wish to find a solution for the microscale displace-
ment, u1

k
, to Eq. (15) that can then be used to reduce Eq. (14) to

include only macroscale terms. The reduced form will define the
homogenized problem that implicitly accounts for features at the
microscale. To that end, we  define the “cell problem” in the domain,
Y, of the periodic cell to be
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where the characteristic displacements, �kl
j

(y), are Y-periodic. Com-
bining the cell problem with Eq. (15) yields a solution for the fine
scale:

u1
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where ũi(x) is an arbitrary additive constant.
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