Accepted Manuscript

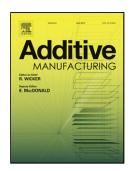
Title: Integration of FDM surface quality modeling with

process design

Author: Alberto Boschetto Luana Bottini Francesco Veniali

PII: S2214-8604(16)30092-6

DOI: http://dx.doi.org/doi:10.1016/j.addma.2016.05.008


Reference: ADDMA 91

To appear in:

Received date: 14-12-2015 Revised date: 15-3-2016 Accepted date: 8-5-2016

Please cite this article as: {http://dx.doi.org/

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Integration of FDM surface quality modeling with process design

Alberto Boschetto^a, Luana Bottini^a*, Francesco Veniali^a

^aDepartment of mechanical and aerospace engineering, Sapienza University of Rome via Eudossiana 18, 00184 Rome (Italy)

* Corresponding author: Tel: +39 6 4458 5703; E-mail: luana.bottini@uniroma1.it

E-mail: alberto.boschetto@uniroma1.it francesco.veniali@uniroma1.it

Abstract

Fused Deposition Modeling is one of the earliest types of Additive Manufacturing technologies. In this process a physical object is fabricated directly from a Computer-Aided Design model, using layer-by-layer extrusion of a feedstock plastic filament material through a nozzle. It was originally developed for design and functional prototype applications, but in the last decade gained considerable recognition and adoption in industry, due to the process simplicity, affordability and ability to make parts in a range of common engineering thermoplastics. Thus, Fused Deposition Modeling products must comply with tolerance and roughness requirements in order to satisfy a mechanical coupling or functionality. This work strives to develop an integrated methodology able to help the process design, with the aim of meeting the requirements of the product. This method enables prior knowledge of the surface quality of the Fused Deposition Modeling product at chosen process parameters, thereby making an ex ante product check possible. Moreover, the methodology can deliver a set of solutions when the requirements are prescribed for the product features, since it is possible to define the technology capability and analyze the proposed fabrication conditions. This methodology is highly useful in process management in conjunction with other operations, and can aid computer aided process planning since it can predict admissible scenarios.

Keywords

Additive Manufacturing, Fused Deposition Modeling, roughness prediction, accuracy prediction.

Nomenclature

r radius of the theoretical FDM profile peak

f spacing of the theoretical FDM profile

L layer thickness

 \hat{b} stratification direction

 \hat{n} surface normal

 \hat{n}_i normal of the generic *i-th* triangle

 α deposition angle

 α_i deposition angle of the generic *i-th* triangle

 R_a average roughness

 Δh dimensional deviation from the nominal value

 ξ rotated x coordinate

η rotated *y* coordinate

 ζ rotated z coordinate

 φ_x rotation angle around the axis x

 φ_{v} rotation angle around the axis y

 $P_k^{(i)}$ vertex of the *i-th* triangle for k = 1, 2, 3

Download English Version:

https://daneshyari.com/en/article/5020075

Download Persian Version:

https://daneshyari.com/article/5020075

<u>Daneshyari.com</u>