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A B S T R A C T

We focus on derivation and experimental verification of the replacement relations that link the overall thermal
conductivities of heterogeneous materials with the same matrix and microstructure but having inhomogeneities
with different properties. First, we derive replacement inequalities based on Hashin-Shtrikman bounds that
relate overall thermal conductivity of a composite to thermal conductivity of a.porous material. Hashin-
Shtrikman bounds are also used to derive analogy of Gassmann equation for thermal conductivity. Then, we use
formalism of property contribution tensors to obtain replacement relations for anisotropic materials containing
ellipsoidal inhomogeneities. These relations coincide for different homogenization schemes – non-interaction
approximation, Mori-Tanaka scheme, and Maxwell scheme, provided, that both effective conductivity of a
composite and porous material are calculated in the framework of the same method. In the case of the overall
isotropy, all of these relations coincide with Gassmann equation derived from Hashin-Shtrikman bounds. We
check the possibility to apply these relations to 3-D non-ellipsoidal inhomogeneities on example of a
supersphere using numerical simulations. The replacement relations are approximate with satisfactory accuracy
for convex superspheres, while the error is significant for concave shapes. For this case, we suggest a
modification that involves an extra shape factor that can be determined, for example, from comparison of the
average Eshelby tensor for conductivity and conductivity contribution tensor of a pore. To verify the approach,
thermal conductivity of 85 quartz sandstone specimens – dry and saturated with water and kerosene – of
porosity varying from 0.14 to 0.29 is measured using optical scanning technique. The average pore shape and
thermal conductivity of the dense quartz matrix are determined from best fitting of the conductivity-porosity
curve for dry sandstone. Then these parameters are used in the replacement relation for sandstone saturated
with water and kerosene. The comparison of the experimental data with theoretical predictions shows a good
accuracy of the proposed approach.

1. Introduction

In the present paper we formulate the replacement relations used in
the evaluation of overall conductive properties to the case of thermal
conductivity. The replacement relations link overall properties of
heterogeneous materials that have the same matrix material and
microstructure while properties of the inclusions are different. They
can be used to predict the change in overall thermal conductivity of a
porous material upon the saturation.

The replacement relations have been first proposed by Gassmann1

in the context of the effect of saturation on seismic properties of rock in
geomechanics. He proposed to express the bulk modulus of fully
saturated rock in terms of the elastic properties of dry rock. Brown
and Korringa2 generalized Gassmann equation for inhomogeneous

anisotropic material. Further discussion has been done by Han and
Batzle3 who mentioned that several physical quantities (porosity,
density and speed velocity) should be consistent and constrained and
proposed to use Voigt-Reuss bounds and critical porosity limits
constraints to get upper and lower bounds for the fluid-saturation
effect. Ciz and Shapiro4 obtained the replacement relations for the
general case of anisotropic two-phase material with anisotropic con-
stituents and specified it for bulk and shear moduli of the isotropic two-
phase composite (see also5 for corrected equation).

Sevostianov and Kachanov6 formulated the replacement relations
for anisotropic materials in terms of the property contribution tensor
for elasticity problem. They showed that these relations are exact for
ellipsoids and approximately accurate for certain non-ellipsoidal
shapes (a cube and various 2D shapes). Chen et al.7 further developed
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their results checking the applicability of the relations to 3-D non-
ellipsoidal inhomogeneities on example of a supersphere (the shape is
mathematically described by equation x x x+ + = 1p p p

1
2

2
2

3
2 ). They

showed that the replacement relations can be used to estimate with a
satisfactory accuracy the effective elastic properties of a material
containing inhomogeneities of convex shape, the error of estimation
for concave inhomogeneities is significant. Saxena and Mavko8 dis-
cussed the replacement relations under the assumption that the elastic
fields inside the inhomogeneities are uniform (overall properties and
properties of the constituents are isotropic). Note that this assumption
is actually equivalent to the statement that the inhomogeneities are
ellipsoids subjected to the uniform external field9–11. Saxena and
Mavko12,13 discussed the impactful applications of these relations in
geophysics, they highlighted the importance of these relations in
evaluating the effective properties of a heterogeneous material from
those of a porous material and the benefices of calculating effective
properties using Eshelby tensor.

In this context, the difference between the Eshelby tensor and the
property contribution tensor need to be clarified. Eshelby tensor,
referred in the first Eshelby problem, is a dimensionless quality that
interrelate the resulted elastic field to the eigenstrain that would have
been exist inside the inclusion. Property contribution tensor, referred
in the second Eshelby problem, is used to give a quantitative descrip-
tion of the contribution of the inhomogeneity into the overall proper-
ties. For ellipsoids, the first and the second Eshelby problems are
mathematically equivalent, all the tensors (Eshelby tensor, Hill tensor,
property contribution tensor etc.) are uniform inside the inclusion/
inhomogeneity (position independent) and they are linearly interre-
lated. For non-ellipsoids, the interrelation between the Eshelby tensor
and the property contribution tensor is not valid, and the Eshelby
tensor can’t be used in the calculation of the overall properties.

In the context of thermal conductivity problem, Schärli and
Rybach14 compared air saturated and water saturated low-porosity
granitic rocks and reported that thermal conductivity of water-satu-
rated samples is 30% higher than “dry” conductivities. Zimmerman15

evaluated thermal conductivity of air- and water- saturated rock using
Fricke formula16 for electrical conductivity of a material containing
randomly oriented spheroidal inhomogeneities (that represents gen-
eralization of Maxwell formula17). In particular, Zimmerman15 pro-
posed a methodology to evaluate thermal conductivity of water
saturated rock from the dry rock measurements and validated the
prediction on experimental data for sedimentary and granitic rock
data. He stated, that the procedure requires inversion of the equations
and, while to of the required equations can be inverted in closed form,
the final results can be obtained only numerically.

In the present paper, we derive the replacement relations analyti-
cally in closed form. First we use Hashin-Shtrikman bounds18 to obtain
replacement inequalities and analogy of Gassmann equation1 for the
case of thermal conductivity of isotropic material. Then we use
formalism of resistivity/conductivity contribution tensors to derive
these relations for anisotropic materials containing ellipsoidal in-
homogeneities. The replacement relations constitute an important
connection between Eshelby tensor (the first Eshelby problem) and
the resistivity/conductivity contribution tensor (the second Eshelby
problem). We check the possibility to use replacement relations for
materials containing non-ellipsoidal inhomogeneities using example of
a superspherical shape7. We show that, similarly to the elastic case, the
replacement relations can be used as a good approximation for
materials with convex inhomogeneities, while application to concave
shapes lead to a serious error. In such cases, we propose to use
modified replacement relation that involves a shape factor that can be
determined experimentally. The approach is verified by comparison
with experimentally measured thermal conductivities of dry and
saturated sandstone. To the best of our knowledge, replacement
relations have never been derived for anisotropic materials and their
applicability has never been checked against the pore shape.

2. Replacement relations based on Hashin-Shtrikman
bounds

Hashin-Shtrikman bounds for effective thermal conductivity keff of
an isotropic statistically homogeneous two-phase material (consisting
of two isotropic phases with conductivities k0 and k1) have the following
form18:
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Where ϕ is volume concentration of the phase with conductivity k1. For
a porous material k = 01 and the lower bound vanishes while the upper
bound can be written as
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Thus, the Hashin-Shtrikman bounds for overall conductivity kdry of
a porous material can be written as
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It leads to the following bounds for porosity ϕ:
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Substitution of the expression (2.4) into the lower Hashin-
Shtrikman bound (2.1) yields the following lower bound for the
effective conductivity of a composite material in terms of the con-
ductivity of porous material having the same structure:
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Similarly, the upper bound for the effective conductivity can be
written as
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Combining (2.5) and (2.6), we can write the replacement bounds -
Hashin-Shtrikman bounds for effective conductivity of a two-phase
material in terms of conductivities of two phases and conductivity of a
porous material (having porosity equal to the volume concentration of
the phase with conductivity k1)
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These bounds can be used, for example, to evaluate thermal
conductivity of saturated rock if properties of the dry one, as well as
properties of two phases are known while the porosity is not known.
Fig. 1 compares bounds (2.7) with the Hashin-Shtrikman bounds (2.1)
for the case of porous calcite either saturated with crude oil or having
pores filled with saturated clay (the properties are given in Table 1). As
expected, the wideness of resulting bounds is about the same as those
of the original bounds (2.1). In particular, when the thermal con-
ductivity of two constituents, k0 and k1, differ two times (conductivities
of calcite and saturated clay), the upper and lower bounds almost
coincide (Fig. 1a and b).

Hashin-Shtrikman upper bounds for effective conductivities of two
statistically isotropic composites can be used to derive the analogy of
Gassmann's equation for conductivity. Indeed, the upper bound
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