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A B S T R A C T

We have derived new closed-form approximations to borehole stresses for weak tilted-transverse-isotropic
media with boreholes oriented in the plane of isotropy but not necessarily along a principal stress direction. By
introducing Green's three anisotropic parameters, ω ω,1 2 and ω3, into Lekhnitskii's formalism for anisotropic
elastic media to calculate stresses around boreholes subjected to internal pressure and in situ stress, we first
have recasted the general borehole stresses into more compact expressions that are useful to highlight explicitly
the impact of the elastic anisotropy. We have shown the equivalence between Lekhnitskii's and Green's
equations for the in-plane components and extended Green's expressions to the anti-plane problem. By
linearizing the expressions for weak anisotropy degree, i.e. ω ≪ 1i , we have shown that the borehole stress
expressions are the sum of the isotropic “Kirsch” solution and additional terms that depend on the anisotropic
parameters ω ω+1 2 and ω3. The additional terms have azimuthal/radial functional dependence of higher orders
( θ θcos 4 , sin 4 ) and ( r r r1/ , 1/ , 1/2 4 6) for in-plane components, and, ( θ θcos 3 , sin 3 ) and ( r r1/ , 1/2 4) for anti-plane
components. Our verification examples show that the new borehole stress expressions provide good
approximations not only for weak anisotropy but also moderate and strong anisotropy in certain cases.

1. Introduction

The presence of a borehole in a stressed subsurface rock formation
alters the local principal stress directions and magnitudes around the
borehole and away from it over a distance of several borehole radii. For
isotropic elastic homogeneous rocks (hereafter called ISO), borehole
stresses are given by the classical Kirsch elastic solution1 or its
generalized version for nonaligned borehole and stress directions.2,3

Borehole stresses depend on the far-field in situ stress, the orientation
of the borehole with respect to the principal stress directions, the
wellbore pressure and the material Poisson's ratio. These solutions are
very convenient for practical purposes as all borehole stress compo-
nents are independent of the material elastic properties, but the one
along the borehole axis that is only dependent on the Poisson's ratio by
the virtue of the plane strain assumption. The in-plane borehole
stresses in local cylindrical coordinates (i.e., σ σ,rr θθ and σrθ) vary
azimuthally and radially following, respectively, series of

θ θ(cos 2 , sin 2 ) and of ( r r1, 1/ , 1/2 4), whereas the anti-plane stresses
(i.e. σrz and σθz) vary azimuthally and radially following, respectively,
series of ( θ θcos , sin ) and of ( r1, 1/ 2). However, today, most wells drilled
for the purpose of natural oil and gas extraction encounter anisotropic

shale formations during the drilling process either in the overburden
for conventional reservoirs or in the reservoir itself for unconventional
shale (mudstone) reservoirs. Most wells drilled in highly deviated or
horizontal directions are penetrating transverse isotropic formations (5
independent elastic properties) or lower symmetry formations such as
orthorhombic or monoclinic (9 or 13 independent elastic properties,
respectively) if fracture- and stress-related effects are present.
Consequently, the calculation of borehole stresses in anisotropic rocks
are needed for practical applications.

The fundamentals for borehole stress and displacement analyses in
anisotropic elastic media were established in two independent works
starting in the 1940's: those of Green and Taylor4–11 and those of
Lekhnitskii12,13 (originally published in Russian in 1947 and 1950,
then translated into English in the 60's). Both works involve complex
stress functions that were used to derive elastic solutions for holes
under the generalized plane strain assumption. Amadei14 used
Lekhnitskii's formalism to calculate stresses and displacements around
arbitrarily oriented open- or cased-boreholes subjected to internal
pressure and in situ stress in arbitrary anisotropic elastic media (i.e. up
to triclinic with 21 independent elastic properties). Those were used for
practical applications by several authors.15–21 Although Amadei's final
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mathematical expressions are closed-form, each stress component
involves a series of complex analytic functions and complex coordi-
nates that lack the simplicity of its isotropic equivalent. It is, therefore,
difficult to get a physical intuition of the impact of the elastic
anisotropy on the borehole stresses, i.e. how does the anisotropy
change the stresses as compared to the isotropic solution (that is
independent of the elastic properties) and what are the potential
additional azimuthal nθ nθ(cos , sin ) and radial r1/ m components that
come into play.

By revisiting the works of Lekhnitskii,13 we found that we can recast
the general borehole stresses into more compact expressions that are
useful to highlight explicitly the impact of the elastic anisotropy. The
simplifications in the expressions come from the introduction of three
anisotropic parameters (ω ω ω, ,1 2 3), following the idea of Green and
Taylor,4 into the Lekhnitskii's formalism. The three anisotropic para-
meters are linked to the roots of the characteristic equations following
the resolution of the Beltrami-Michell equations, and are dependent on
combinations of elastic properties for given material symmetries and
borehole orientations. By linearizing the expressions for a weak
anisotropy degree, we arrive at borehole stress expressions that are
simply the sum of the isotropic solution and additional terms that
depend on the elastic constants and involve an azimuthal/radial
functional dependence of higher orders ( θ θcos 4 , sin 4 ) and
( r r r1/ , 1/ , 1/2 4 6) for in-plane components, and, ( θ θcos 3 , sin 3 ) and
( r r1/ , 1/2 4) for anti-plane components.

The purpose of our paper is to present these new closed-form
approximations to borehole stresses for weak anisotropic elastic media
that highlight explicitly the impact of the anisotropy, along with the re-
written more compact general expressions. In this paper, we restrict
our derivations to tilted-transverse-isotropic media (hereafter called
TTI) with boreholes oriented in the plane of isotropy (one example of
which is a horizontal borehole in a vertical transverse isotropic
medium, also called VTI medium), due to its high practical importance.
This configuration leads to the decoupling of the problem into in-plane
and anti-plane stress expressions. The boreholes are not necessarily
along a principal stress direction, i.e. the in situ stress in the borehole
reference frame may possess six non-zero components. Green 7 has
published simple exact expressions for in-plane stresses at the borehole
wall for this anisotropy-borehole configuration, as well as exact in-
plane component solutions (i.e., σ σ,rr θθ and σrθ) as function of (r θ, ) for
all loading conditions, but has not provided the anti-plane solutions
(which are needed for a full description when the stress directions are
not aligned with the borehole axis and medium symmetries). By
simplifying the most general Lekhnitskii formalism for this configura-
tion, we find the same expressions as shown by Green 7 for the in-plane
problem, and also obtain the anti-plane components.

2. Borehole, stress and material anisotropy configurations

We consider an infinite elastic anisotropic formation which is
homogeneous and continuous in all directions. Internally this body is
bounded by a cylindrical borehole of radius a. For subsurface geologic
media, we assume that the borehole is sufficiently far away from the
free surface to honor the conditions of infinite media and generalized
plane strain assumption.

2.1. Wellbore geometry and stress transformations

In the subsurface, an in situ stress field exists where the principal
stress tensor takes the form
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where σH and σh are respectively the maximum and minimum
horizontal principal stresses respectively and σV is the vertical principal
stress (see Fig. 1). For the sake of simplicity, but without loss of
generality, we assume that the vertical stress σV is always aligned with
the vertical component (V) of the NEV (orthonormal right-handed
North-East-Vertical) reference frame. The horizontal stress field can be
rotated by an angle γNEV measured between N (north) and σH, towards
E (east). In order to rotate the regional stress field into the NEV frame,
the following coordinate transform is used

σ R γ σR γ= ( ) ( )NEV
z

NEV
z
T NEV (2)

where R γ( )z
NEV is a rotation matrix defined in Appendix A and where

R γ( )z
T NEV is the transpose of R γ( )z

NEV . For the computation of the
borehole stress concentration, it is convenient to rotate the stress field
into the top-of-hole borehole coordinate system, hereafter called TOH
(see Fig. 1 for definition). Here and in the rest of the paper we assume
for convenience that the in situ stress field is aligned with the NEV
frame (i.e. γ = 0NEV ). The coordinate transform of the NEV stress
tensor σNEV to the stress tensor in the borehole frame σTOH is

σ T α α σ T α α= ( , ) ( , ).TOH
t D A

NEV
t
T

D A (3)

Here αD and αA are the borehole deviation and azimuth respec-
tively. The rotation matrix T α α( , )t D A is defined in Appendix A.

Fig. 1. Schematic of the geographic and borehole reference frames and the principal
stress directions. The geographic reference frame is the north-east-vertical (NEV) frame.
The borehole frame is the top-of-hole (TOH) frame whose z-axis points along the
borehole in the direction of increasing depth. The x-axis is in the cross-sectional plane
and points to the most upward direction, and the y-axis is found by rotating the x-axis
90o in the cross-sectional plane in a direction dictated by the right-hand rule. The
principal stress directions are chosen such as one component is parallel to the vertical
NEV axis and the maximum horizontal component is rotated by the angle γNEV with
respect to the north axis. The orientation of the borehole is defined by the deviation angle
αD and the azimuth angle αA.
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