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1. Introduction

Rock joints represent discontinuities in rock masses, and are
sources of mechanical instabilities of rock structures. The larger
asperity roughness of joint surfaces contributes to a better stability of
these structures, and thus assessment of joint roughness is an
important part of geotechnical practice when shear strength of rock
joints is evaluated.

Barton1 introduced the concept of joint roughness coefficients
(JRC) to characterize surface roughness of unfilled rock joints. The
same author, in co-operation with Choubey,1,2 showed experimentally
that shear strength of rock joints depends strongly on the values of
JRC, and proposed the following relation for determining shear
strength τ:
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where σn is the normal effective stress, JCS represents effective joint
wall compressive strength, and Φb is a basic friction angle (material
constant). The difficulty of evaluating τ consists in the difficulty of
determining JRC. Despite this fact, JRC values are the most frequently
used characteristics for quantifying joint roughness and shear strength
of rock joints.

Barton and Choubey1,2 also proposed to estimate JRC values by
means of three possible ways: (i) by back-computing from relation (1),
(ii) by using tilt and pull tests or (iii) by a simple visual comparison of
the analyzed joint surfaces with ten standard two-dimensional (2D)
profiles of known JRC values. The visual assessment of joint roughness
due to its simplicity and quick accomplishment often is selected as a
preferable method, although it is based on rather a subjective

procedure.
Besides the joint roughness coefficients associated with Barton's

visual method, there are various other roughness coefficients that may
characterize surface irregularities.3–8 However, the joint roughness
coefficients are very special indicators derived from experimental
measurements of shear strength,1 which makes them well suited for
geotechnical practice.

Soon after Barton's JRC concept had been published,1 many papers
appeared9–17 that tried to express the coefficients JRC in various
functional forms. For example, Lee et al.13 proposed the joint rough-
ness coefficient JRC in the form of quadratic polynomial, in which
fractal dimension assumed the role of independent variable. These
authors computed the fractal dimension D from two-dimensional
profiles by the yard-stick method, and suggested a regression equation
as follows:
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An instructive overview of various methods utilizing joint rough-
ness coefficients in current geotechnical practice has recently been
published by Morelli18. A comprehensive overview of existing empirical
fitting patterns for JRC can be found in two other recently published
papers.19,20 The first paper by Li and Zhang19 summarizes those
patterns which employ various measurable topographic parameters.
The second paper by Li and Huang20 summarizes existing empirical
fitting patterns for JRC that are based on the fractal dimensions D of
the measured profiles of jointed surfaces. They gathered nineteen
empirical fractal patterns that can be divided into five groups:
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where c and β are numerical constants, and f is a function of fractional
type.

All the fractal patterns in the paper by Li and Huang20 represent
empirical relations. Their coefficients c, cn, β and others that are
hidden in the fractional functions associated with group (7) were
optimized by regression methods. Their D-domains were restricted to
very small intervals D ∈ (1 , 1.09). These very low D values were
mostly derived from the ten Barton standard profiles by using the
divider method, sometimes called the compass-walking method.20

However, it is not likely that natural rock joints generally have such
small fractal dimensions. The values about D ≈ 1.09 of profile curves
represent very smooth surfaces. In practice, when analyzing natural
rock joints, some researchers have found larger D values. For example,
when analyzing rock surfaces at Yucca Mountain in Nevada, Car21

found power spectrum fractal dimensions reaching up to 1.467,
whereas divider (compass-walking) fractal dimensions for the same
surfaces did not exceed the value 1.032. As will be explained in the next
sections, this is because the profile curves of rock surfaces are not self-
similar fractals, but rather self-affine fractals, which require a modified
divider method to obtain rigorous fractal dimensions.

Finally, another important point of the paper by Li and Huang20

should be highlighted. These authors correctly identified three main
sources of numerical discrepancies between the studied fractal fitting
patterns, namely, (i) different origins of joint profiles, (ii) different
numerical methods for computing D, and (iii) different methods for
determining JRC. In the next sections, a new fractal fitting pattern will
be derived that does not suffer from these sources of drawbacks, since
the derivation employs only those scaling relations that are generally
valid in the field of fractal geometry. The derivation will neither
compute any fractal dimensions, nor use profiles of other authors, so
that no regression procedure will be used, and even the employed
values of JRC will be received from the basic relations introduced by
their inventors, i.e. by Barton22,23 and Bandis.24,25

2. Size effect with joint roughness coefficients

JRC values are correlated with the maximum profile asperity
amplitude amax measured along the profile length L . This fact was
found by Barton22 on the basis of the results of Bandis.24 Barton22

suggested the following two relationships:
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and accompanied them by a figure illustrating experimental measure-
ments of the mentioned correlations. In addition, Barton and
Bandis23,25 published complementary relations concerning JRC , JRCo,
JCS and JCSo:

⎛
⎝⎜

⎞
⎠⎟JRC JRC L

L
= o

o

JRC−0.02⋅ o

(10)

⎛
⎝⎜

⎞
⎠⎟JCS JCS L

L
= o

o

JRC−0.03⋅ o

(11)

Relationships (8)–(11) strongly suggest the scaling relations fre-
quently appearing in fractal geometry.26–33 They will be subjected to
analysis and their functional forms will serve as prototypes for deriving
the rigorous fractal scaling formulae.

3. Fractal scaling relations

When computing fractal dimension of a geometrical object, it is
necessary to decide whether the object is self-similar or self-affine. The
fractal dimensions of self-similar objects can be computed by all known
fractal methods as box-counting method,26 compass method,26–28

'mass' method,26 power spectral method27,28 or methods using resi-
duals as e.g. R/S method,26,28 variance (root-mean-square) method,29

range method,30,31 etc. However, the computation of fractal dimen-
sions of self-affine fractals requires a careful choice of modified
computational methods.32,33 The problem is that self-affine curves, in
contrast to self-similar ones, are not identically scaled in x- and y-
directions, and the common computational methods have to be
adapted to this self-affine property.27,29–31 The different scaling in
the x- and y-directions32 means that when the x-coordinates of a self-
affine curve are multiplied by a positive constant b, then the corre-
sponding y-variables have to be multiplied by a different positive
constant bH in order to receive statistically similar curves, i.e.,

y bx b y x H( ) → ( ), 0 ≤ ≤ 1,H (12)

where H is the so-called Hurst exponent,27–32 and b is the so-called
scaling constant. Relation (12) manifests the statistical identity of the
curves y x( ) and b y bx( )H− . The Hurst exponent H of two-dimensional
self-affine curves is closely connected with the fractal dimension D of
y x( ) as follows27–32:

D H= 2 − (13)

Since the two-dimensional vertical profiles of fracture surfaces are
self-affine curves (self-affine fractals),26–28,32 their dimensions D have
to be computed by proper methods. For example, the residual methods,
namely the range method,30,31 are quite convenient for such a task.
The range method is based on the following scaling formula30,31 that is
generally valid for self-affine fractals:

a const L= × H
max (14)

where amax is the y-range of the self-affine function y x( ), i.e.
a MAX y MIN y= ( ) − ( )max within the L-domain, i.e. x L∈ (0, ). As
seen, the symbols amax and L in Eq. (14) have identical meanings as
the symbols in Barton's Eqs. (8) and (9). To illustrate the applicability
of the scaling relation (14) to rock joints, we plot the functional
dependence a L( )max in Fig. 1. This figure has been formed on the basis
of graphical data published originally by Barton.22 Fig. 1 uses the log-
log co-ordinate system in which the graph of the function a L( )max shows
linear behavior

a const H Llog( ) = log( ) + ⋅ log( )max (15)

The Hurst exponent H appears as a slope in the log-log relation (15)
and, as seen in Fig. 1, it assumes the value H ≈ 0.53 (i.e. D ≈ 1.47). The
graph has been optimized by the least square method. The Hurst
exponent 0.53 satisfies the requirement H0 ≤ ≤ 1. The experimental
data used for plotting the linear dependence (15) span over almost two
orders of joint profile lengths L (starting from 10 cm up to several
meters), which instructively illustrates the universal applicability of
fractal relation (14) to the joint profiles of wide length scales.

On the basis of the general scaling relation (14), it is possible to
rewrite Barton's Eqs. (8) and (9) into the following scaling forms:

JRC const L= 400 × ×o o
H−1 (16)

JRC const L= 450 × × H−1 (17)

From Eqs. (16) and (17), a more compact fractal formula can be
derived:
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