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1. Introduction

Most rocks show some degree of anisotropy in their properties such
as strength, elastic constants, permeability and propagation velocities
of volumetric (compressional and shear) waves. Anisotropic rock
properties are influenced by foliation, schistosity, layering, bedding
and cleavage, as anisotropic behavior is related to the rock fabric, but it
can also be due to the presence of microcracks, joints and faults or
induced by stress field and stress history.1,2 Investigation on aniso-
tropic rocks has many applications including foundation engineering,
tunnelling, mining, petroleum engineering, and hydrogeology.2

Some directional properties such as permeability and wave velocities are
usually described as symmetric second rank tensors, and can be visualized
as ellipsoids (or ellipses, in two dimensions). Semi-axes are equal to, or a
function of, the principal values of the property being analysed. The aim of
this study is to present a method for least-squares based geometric fitting of
ellipses in polar coordinates, which is intended to be applied to two-
dimensional analysis of anisotropic properties of rocks and other materials
which are measured as azimuthal data. Since these are usually noisy data,
ellipse fitting is a useful tool for estimating principal values (maximum and
minimum) and their directions in two dimensional studies.

Measuring wave velocities provides an indirect investigation of the
material, revealing information about rock structure not accessible by
direct observation. For instance, in jointed or interbedded rocks,
maximum compressional wave velocities are observed parallel to joint
orientation or bedding planes.2–4 Furthermore, wave velocities can be
statistically correlated to other rock properties such as strength and
permeability, and can also be used for rock mass classification
purposes.2,5 Numerous experimental studies are available relating
wave velocities to rock fabric, porosity, microcracks and joints,6–11

stress state,6,9,12–14 permeability,4,15–17 and fluid saturation.18,19

Additionally, compressional and shear wave velocity tensors are
related to elastic constants of anisotropic rocks. Transverse isotropy
model is typically used to describe bedded sedimentary rocks, rocks
with aligned microcracks, or rock masses with one set of fractures. This
model is characterized by five independent elastic constants, which can
be calculated from rock bulk density and compressional (or primary)
and shear (or secondary) velocities, denoted by Vp and Vs respectively,
measured in specific directions. Two-dimensional analysis is suitable
for transversely isotropic rocks, where directions normal and parallel to
bedding planes are assumed to be the principal directions, then Vp and
Vs measured in these two directions allow calculation of four elastic
constants, and at least one measurement at an oblique angle is required
to calculate the fifth elastic constant, for which compressional velocity
at 45° (Vp(45o)) is usually chosen.9,20–23 In many studies of transversely
isotropic rocks,6,7,14,23,24 Vp and Vs are measured in two directions,
normal and parallel to the bedding planes, assumed to be the principal
velocities. In these cases, Vp at an oblique angle may be calculated from
the ellipse equation.

Sedimentary rocks may show relatively high degree of velocity
anisotropy, as shown by Vernik and Liu 21 from measurements in
samples of kerogen-rich shales. The authors observed that these rocks
have strong anisotropy, as both compressional and shear velocities
parallel to bedding planes are very high compared to the velocities
normal to bedding, reaching a ratio of 1.47 between maximum and
minimum values of both Vp and Vs.

2. Wave velocity anisotropy

In anisotropic media, not only compressional and shear wave
velocities depend on direction of propagation, but polarization of the
shear wave occurs, so three wave modes can propagate, one compres-
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sional and two shear waves.1 A detailed discussion of wave propagation
in anisotropic media is presented, for instance, in 1,25,26. This study
concerns only compressional velocity analyses.

Anisotropic wave velocities are usually represented in polar graphs,
which are a convenient way of observing principal directions and
anisotropy ratios. Some authors choose to plot velocity in the radial
axis,10,18,27,28 others prefer to plot squared velocity 3 or even slowness,
which is the inverse of velocity.11,29

Budavari 27 presented a mathematical method for determining Vp

based on the characterization of the rock mass anisotropy by an
ellipsoidal type velocity law. He described Vp tensor as an ellipsoid
with semi-axes equal to the principal values of Vp; the same approach
was also used in 28:
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where X, Y, and Z are the principal directions and VpX, VpY, and VpZ are
the principal compressional wave velocities.

In two-dimensional analysis of wave propagation (e.g. in the XY
plane), anisotropic Vp is represented by an ellipse with semi-axes VpX

and VpY:
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Oda et al. 3 chose to represent velocity anisotropy as a function of
the squared velocity rather than the velocity, because (Vp)

2 is directly
related to the elastic constants and because the ratio between the
squared measured velocity and the squared reference velocity in non-
cracked rock (Vp/Vp0)

2 is related to the Rock Quality Designation
defined in 30. Supposing (Vp)

2 can be approximated by an ellipse:
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Bloch et al. 29 suggested representing the slowness (1/Vp) in radial
plots for estimating in situ stress orientation, because the direction of
maximum slowness indicates maximum horizontal in situ stress based
on the orientation of microcracks resulting from stress relief. Benson
et al. 11 applied the general equation for an ellipsoid to the slownesses
to analyse experimental data. This interpretation indicates that the
slowness may be approximated by an elliptic function:

V X V Y+ = 1pX pY
2 2 2 2 (4)

In the present study, four hypoteses concerning the variable used to
define the ellipse equation were considered: (1) velocity (Vp); 2)
squared velocity (Vp)

2; (3) slowness (1/Vp), and (4) squared slowness
(1/Vp)

2. The method of ellipse fitting described in Section 3 was used to
fit these four variables and to statistically evaluate and compare these
hypoteses.

3. Proposed method for ellipse fitting

Several authors describe ellipse-fitting methods for various applica-
tions, including image processing,31,32 object detection,33 topography
34; strain analysis,35,36 and anisotropy analysis,8,10,11,18,37,38 for exam-
ple.

Ellipse least-squares fitting methods are widely used and may
consist of algebraic or geometric curve fitting. Some authors propose
algebraic fitting of conics without constraint,39,40 arguing that the
minimization procedure will converge to an ellipse if this is the best
fitting curve. Others prefer ellipse specific fitting adding a constraint to
the algebraic equation.32,41 A third group uses geometric fitting 33,42,43

minimizing the orthogonal distance. In all works cited in this para-
graph, cartesian coordinates system was used.

Ellipses can be described by five geometric parameters, which may
be the coordinates of the center, both semi-axes and the angle of tilt of

one semi-axis. Ellipse fitting can be applied to azimuthal data, which
are conveniently represented in polar coordinates. Due to the nature of
the data, the ellipse is always centered at the origin of the coordinate
system, so the proposed fitting procedure involves determining three
curve parameters: both semi-axes and the orientation of one semi-axis
referred to a given direction. In this article, a method for fitting ellipses
in polar coordinates is proposed.

The equation of an ellipse in polar coordinates is:
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where r′ and θ are the polar coordinates of the points on the ellipse, a
and b are respectively the major and the minor semi-axes, and θ0 is the
tilt angle of the major semi-axis orientation.

The residual fi of any ith data point is given by
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where ri and θi are the coordinates of the ith data point and r′i is the
radius coordinate of the ith estimated point.

A least-squares fitting method was used to define the objective
function ϕ to be minimized with respect to a, b, and θ0:
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where n is the number of data points.
An iterative method without evaluating derivatives was used for the

minimization procedure. Due to the small number of curve parameters
and of data points typical of the suggested applications, and also to the
possibility of a good initial guess for both semi-axes from preliminary
data analysis, a simple method for function minimization was chosen
consisting of a grid based direct search, as described by Rao.44 Initial
guess adopted for the semi-axes are equal to the maximum and the
minimum values of the experimental data used in the fitting procedure,
and these can be defined as the center point of the grid. The search
range and intervals can be set for each case. The algorithm was
implemented using C++ programming language.

The accuracy of the fit was estimated by evaluating the sum of the
squared residuals relative to the mean value of the squared data (r2)*,
as described by
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The proposed method is intended to be applied to two-dimensional
analysis not only of wave velocity but for any directional properties,
including those whose principal values may differ by one or more
orders of magnitude, as is the case of permeability.

4. Validation tests

Some selected tests are presented in Sections 4.1 and 4.2 to prove
the ability of the method to fit ellipses correctly and its robustness.

4.1. Data without noise

Three tests consisted in choosing a set of points on a given ellipse
with known semi-axes a and b and tilt angle of the major semi-axis θ0
to be used as data points to fit an ellipse, which is then compared to the
original one. The results of three tests representing different aniso-
tropic materials are shown in Fig. 1. Data set for each test was
composed of eight points separated by an angle of 45°. The first curve
is a circle, which is representative of an isotropic rock. The second
curve is an ellipse with a/b=2, and the third is an ellipse with a/b=10.
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