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A B S T R A C T

A three-phase damage micromechanical model for rocks is developed through a combined consideration of
micromechanical and thermodynamic theories. The rock is considered as a three-phase composite system,
namely the rock skeleton without porosity, the initial pores, and the new cracks. The interaction among the
three phases is considered. The kinetic equation of crack damage evolution is established in terms of the
thermodynamic driving force derived from the reduction of Gibbs free energy of rocks. An equation that
balances the thermodynamic driving force with the corresponding resistive force is obtained to calculate the
damage volume fraction of crack under given stress. The stress-strain response of rocks is investigated under
confining pressure or with different pore volume fraction. The theoretical results are found to be in good
agreement with experimental data.

1. Introduction

In the development of national economy，underground engineer-
ing，slope engineering, oil and gas drilling engineering and so on are
related to rocks. Rocks are complex natural geologic bodies, which have
very complex internal structures under the external load and environ-
ment. Rocks are typical porous materials from the aspects of micro-
structures. There are a large number of micro cracks with random
distributions in the solid phase materials. Crack propagation and
damage accumulation of micro cracks will lead to the weakening of
the strength and stiffness of the rocks under the external load, which
make the rocks show obvious nonlinear.1,2 The damage studies of rocks
are very important for the deep understanding of the response of rock
mass under the influence of thermal stress and seepage pressure. The
damage constitutive relation of rocks is an important part of the study
of rocks mechanics. It is also the current research difficulty problem,
which should be solved in the field of geotechnical engineering.

There are a number of damage models proposed for rocks, which
can be divided into two major categories: macro damage models2–8 and
micro damage models.9–20 The macro damage models are generally
based on macroscopic experimental data and formulated in the frame-
work of irreversible thermodynamics. The damage state is character-
ized by scalar, vector or tensor internal variables. However, with the
phenomenological approaches, the physical phenomena at different
scales, which represent the origin of material damage and inelastic
deformation, are not properly taken into account.

It has been found that the macroscopic mechanical behaviors of
rocks strongly depend on the microstructures. Therefore, various

micromechanical constitutive models have been developed to model
evolving damage due to nucleation or progressive growth of random
distribution microcracks.

Pensee et al.9 have proposed a general three-dimensional micro-
mechanical approach to modeling anisotropic damage of brittle
materials such as rocks. Damage is analyzed as a direct consequence
of microcracks growth. The authors of10–12 proposed some micro–
macro models which explicitly relates the macroscopic mechanical
properties to the mineral composition and the porosity for Callovo-
Oxfordian argillite or cement based materials. Shen and Shao13

developed an extended micromechanical model of anisotropic rocks,
and described the elastoplastic behaviors of anisotropic sedimentary
rocks considering the influence of pores. Chen et al.14 presented an
empirical upper bound permeability model by considering the micro-
structure mechanisms, and the experimental results have been well
simulated by the proposed model. Ghabezloo15 proposed a self-
consistent micromechanical model to evaluate the effective compres-
sibility of sand stones. The sandstone microstructure is modeled by
spherical inclusions with imperfect interfaces embedded in a matrix.
Zhu et al.16 developed a damage-friction coupled model based on the
method of linear homogenization and the irreversible thermodynamics.
An explicit function of the rock strength has been derived during the
damage-friction coupled analyses. The essential feature of the damage
resistance function has been described. Micromechanical based model
for porous rocks like composites also can be found in.17–19

However, rocks are traditionally regarded as a two-phase system
with the rock skeleton phase without porosity and the crack phase in
the most above models. In fact, rocks usually contain some initial
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pores, and may also produce new cracks with increasing the load. There
are interaction among the rock skeleton, initial pores and new cracks.
The influence of initial pores on the rocks properties is considerable
even if the pores are small.2 Even though the rocks are considered as a
multiphase system in some exiting models, a two-step homogenization
method is used to analyze their linear effective properties for the sake
of easy calculation.11,20 The interaction among these phases cannot be
analyzed well. It is important to further build an accurate damage
model to describe microstructure-mechanical behaviors of the rocks.

Based on the equilibrium thermodynamic principles, the damage
micromechanical theory has been used to predict mechanical behaviors
of many materials such as shape memory alloys considered as a three-
phase system. And the predicted results show good agreement with
experimental results.21,22

In the present paper, based on the micromechanical and the
thermodynamic theory, a model for rocks is developed. The rocks will
be modeled as a three-phase composite system, namely rock skeleton
without porosity as the matrix, the pores with a constant volume
fraction as an inclusion phase, and the new cracks resulting from
increasing confining pressure also as an inclusion phase. The new
cracks in rocks are governed by the reduction in Gibbs’ free energy of
the system. Likewise, there is a resistance force associated with the
nucleation and growth of new cracks. At a given level of applied
mechanical stress, the driving force must be sufficient to overcome the
resistance force in order to develop new cracks. The inelastic strain
resulting from cracks may be determined by the criterion of general
Coulomb friction.

2. Micromechanics damage constitutive modeling

Let us consider a porous rock. The representative elementary
volume (REV) is considered as a three-phase system, rock skeleton
matrix denoted as the 0th phase, pores denoted as 1st phase, and the
new cracks denoted as 2nd phase, see Fig. 1. According to Ref.11, the
shape of pore is assumed to be spherical, and the crack as penny-
shaped. The volume of the whole rock is defined as 1. The damage
volume fraction of pores is constant, denoted as fp, and the damage
volume fraction of the cracks as fc.

Under an applied far-field uniform stress σ0, the stress-strain
relation only for matrix material is given by

σ C ε= s
0 0 (1)

where Cs is the stiffness tensor of the matrix.
When the three-phase system is subjected to the same far-field

stress σ0, the interaction between the presences of all inclusions and
the matrix may result in the average perturbed stress σ∼ in the matrix
and that corresponds to an average perturbed strain ε∼. Then, its
average stress and strain in the matrix are related to each other through
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The perturbed stress and strain are related by

σ C ε= ∼∼
s (3)

The stress σc and strain εcwithin the crack inclusion are also taken
to be uniform. Its perturbed parts with respect to those of the matrix
are denoted as σ′c and ε′c, respectively.
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where Cc and ε*c are the stiffness tensor of the crack inclusion and
equivalent eigenstrain, respectively. εc

tr is the inelastic strain due to the
generation of cracks. By means of Eshelby's equivalent principle, ε′c
may be written as

ε S ε ε′ = ( + *)c c c
tr

c (5)

where Sc is the average Eshelby's tensor of cracks. Because the new
cracks locate in different directions, and Eshelby tensor is different in
different orientation of the cracks.

The substitution of Eq. (5) into Eq. (4) yield
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where I is fourth-order identity tensor. From Eq. (6), we can get

ε ε C C S C C C C σ ε C ε+ * = [( − ) + ] [−( − )( + ) + ]∼
c
tr

c c s c s c s s c c
tr−1 −1 0 (8)

Likewise, the average strain and stress for the pores are expressed
by

σ C ε ε S I ε= [ + + ( − ) *] = 0∼p
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where the corresponding stress, strain, and the Eshelby's tensor are
marked with superscript or subscript ‘p’ to represent the values
associated with the pores. From Eq. (9), we can get
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Taking the volume average of the stress field under uniform stress
boundary conditions, it follows that
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The substitution of Eqs. (3) and (6) into (12) yield
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where
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where
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Substituting Eq. (13) into Eq. (11), we obtain
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where

A S I I A C= −( − ) ( + )p s2
−1

1
−1 (17)Fig. 1. Schematics of a three-phase model of rocks.
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