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ARTICLE INFO ABSTRACT

The double-porosity, dual-permeability theory is employed to predict the wave attenuation and phase velocity
dispersion induced by wave-induced mesocopic fluid flow. Instead of using an up-scaled, single-porosity
approximation scheme proposed by previous researchers, we develop an analytical method to exactly solve the
wave equations for double-porosity materials. We first propose a new form of wave equations formulated in
terms of displacements. This new form of wave equations enables us to decouple the field equations into two
second-order symmetric dynamic systems, namely, the P-system for compressional waves and the S-system for
shear wave. We then implement Newton iteration for solving the cubic dispersion equation for compressional
waves. Finally, to understand the loss mechanism caused by mesoscopic flow, we compare the attenuation
curves of the first (P1-wave), the second (P2-wave), and the third compressional waves (P3-wave), as well as the
shear wave (S-wave), with the mesoscopic flow present to those with the mesoscopic flow absent. Furthermore,
the effects of matrix porosity, pore-fluid viscosity, and values of fluid transport coefficient on wave attenuation
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are also investigated in numerical examples.

1. Introduction

Most earth materials such as rocks and sediments are generally
heterogeneous and often fractured or cracked. In such materials, the
pore and crack/fracture space may be filled with water, oil, or gas.
When elastic waves propagate through such porous materials, fluid-
related wave attenuation and dispersion occur. It is commonly
accepted that the relative fluid-solid movement before the establish-
ment of pore pressure equilibrium, known as the wave-induced fluid
flow (WIFF), is the main cause of wave energy losses.

Biot's theory of poroelasticity’> may be the most commonly used
theoretical model to estimate the frequency-dependent attenuation and
dispersion caused by WIFF. Nevertheless, during the past decades, a
number of studies® ® have shown that the level of attenuation predicted
by using the Biot's theory is drastically underestimated in the seismic
band and can only be significant at frequency above 10 kHz, well
outside the seismic exploration band. The principal reason for this is
that in Biot's theory the porous material is assumed to be spatially
homogeneous (macroscopic homogeneous) and fluid-saturated, and, as
a result, only the macroscopic flow, resulting from pore pressure
gradients established between the peaks and troughs of the wave,
occurs, which does not produce enough loss. This mechanism is
broadly known as the Biot loss and, roughly speaking, the intrinsic
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loss, quantified using the inverse quality factor Q~!, attains Biot-loss
maximum when the wavelength-scale pressure gradients just equili-
brate in a wave cycle. A possible alternative to Biot's loss is the so-
called “mesoscopic-loss mechanism”.

Many geological materials such as reservoir rocks are generally
heterogeneous and often fractured or cracked. When a compressional
wave stress a material containing such mesoscopic heterogeneities (i.e.,
the heterogeneities exist on length scales smaller than the wavelength
but greater than the pore scale), the pore pressure developed on the
mesoscale drives the fluid flow between the more compliant parts of the
material, e.g., cracks/fractures, and the stiffer portions, e.g., the
background pores. Such wave-induced mesoscopic flow is increasingly
believed to be a dominant mechanism of fluid-related attenuation in
the seismic band. This mechanism is the so-called “mesoscopic-loss
mechanism”. Several theoretical models for wave attenuation and
dispersion in porous rocks containing mesoscopic heterogeneities have
been proposed during the past decades®®'” (a comprehensive review
of different models is provided by Miiller et al.'®). Among them, the
dual-porosity, dual-permeability model may be the simplest and ideal
approach to modeling fractures in porous media based on Biot's theory
of poroelasticity.”'?>*® In such models, the mesoscopic cracks/frac-
tures are treated as a fracture network embedded in porous matrix
blocks, and it is generally assumed that the fracture permeability is
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much greater than the matrix permeability, while the volume fraction
of the fracture phase is much smaller than that of the matrix phase.

Early double-porosity models were initially proposed for large-scale
transport problems in fissured rocks in hydrology.'® More sophisti-
cated models”!>1317:20-2% were developed later to account for the
coupling between rock deformation and flow. In particular, the double-
porosity, dual-permeability models developed by Berryman and Wang’
and Pride and Berryman'*'® have aroused much attenuation in recent
years.

Rigorously following Biot's approach, Berryman and Wang’ make a
generalization of Biot's single-porosity poroelasticity to double-poros-
ity, dual-permeability theory to incorporate fractures. In their model,
the fractures/cracks are assumed to be throughgoing joints, namely the
fracture volume is all void space. The model of Berryman and Wang
predicts three distinct types of compressional waves exist in a double-
porosity medium. Nevertheless, the fluid flow between the matrix and
fracture phases, that is the so-called “mesoscopic flow”, are neglected
which effect is believed to be a major cause of fluid-related attenuation
in the seismic band. As a result, only Biot loss is present in their model.

Thus, more recent work of Pride and Berryman'*'® using the
volume averaging technique to derive the governing equations for
double-porosity media has incorporated mesoscopic flow mechanism
by allowing fluid transport between two poroelastic phases. In their
model, the mesoscopic heterogeneities, which are not confined to
fractures/cracks, are envisioned to be a porous continuum (e.g., a
less-well consolidated sandstone), embedded within a stiffer porous
host (e.g., a consolidated sandstone). But instead of solving the
governing equations for the double-porosity model directly, they
propose an ingenious scheme to reduce their model to an effective
single-porosity Biot theory having complex frequency-dependent coef-
ficients. Using the opproposed scheme, they demonstrate that the
predicted attenuation level of the fast compressible wave (P1-wave) is
consistent with that measured by Sams et al.’ Furthermore, they
extend the double-porosity framework to incorporate two other
theoretical models, namely the squirt-flow model and patchy-satura-
tion model.” Although we can apply the proposed approximation
scheme to the study of Pl-wave attenuation and dispersion, it is
impossible to employ their method to investigate wave phenomena
associated with the second slow wave (P3-wave). Thus a need remains
for exactly solving the wave equations for a heterogeneous double-
porosity model, which incorporates the mesoscopic-loss mechanism.

The purpose of the present paper is first to provide an analytical
method to exactly solve the field equations for double-porosity
materials, and then investigate the effect of mesoscopic flow on the
attenuation and phase velocity dispersion of compressional and shear
waves. To this end, using the solid displacement u and the relative
fluid-solid displacements w;, w, as independent variables, we first
reformulate the governing equations of Pride and Berryman in terms of
displacements. This new form of wave equations enables us to decouple
the field equations into two second-order symmetric dynamic systems,
each of them consisting of three coupled wave equations. Next, we
substitute plane wave solutions into the obtained symmetric dynamic
systems to find the dispersion relations for compressional and shear
waves, and subsequently, we implement Newton iteration for solving
the cubic characteristic equation for compressional waves. Finally, to
understand the mesoscopic loss mechanism in double-porosity, dual-
permeability models, we give examples of P1-, P2-, P3-, and S-waves
attenuation and phase velocity dispersion.

2. Field equations
2.1. Constitutive equations
The linear constitutive relations among strain, fluid content, and

pressure for isotropic materials with double-porosity can be written in
the form®12-13:31-33
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where ¢ = 9V/V is the volumetric strain, ¢ = (6« + 0y, + 0,,)/3 is the
mean normal stress, p; and p;, are the pore pressures in the phases 1
and 2, and the other two variables ¢ and ¢, are respectively the
increments of fluid content in the two phases. The six independent
coefficients a; appearing in the matrix on the right hand side are
material constants.

If phase 2 is assumed to be a fracture phase with through-going

joints, the constants a; are given by”'*?
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where K and K; are the drained bulk moduli of the whole and the
matrix (phase 1), K; and (K), are the unjacketed bulk moduli of the
whole and the matrix, a; = 1 — Kj/(K}), is the corresponding Biot-Willis
coefficient, K; is the pore fluid bulk modulus, B, is the Skempton's pore-
pressure buildup coefficient for the matrix, and v, = 1 — v is the total
volume fraction of the fractures in the whole.

If, on the other hand, phase 2 is assumed to be a porous continuum,
a; are determined by>'*%>
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where the Q; are auxiliary constants given by
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In Eq. (1), the variables e, ¢, & are expressed in terms of the three
independent variables o, Pris Pras and thus, this form”f)f constitutive
equations is termed the pure compliance formulation.”” On the other
hand, the variables e, {, {, can be also chosen to be independent
variables and, by solving e, ¢, {; in terms of o, p;, p;,, the inverse
relation of (1) (termed the pure stiffness formulation) can be found to
befifi
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where the constant y is the shear modulus of the drained media and
other constants H, G, C;, M;, M,, N can be written in terms of a;;:
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